Mathematics Materials Lecturer A.M.Alazzawe FIRST CLASS
SEMESTER ONE

CHAPTER ONE

1.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers: are numbers that can be expressed as decimals, such as

1
— 2 = 75

7 = —0.75000...
1 _ 033333

3= 033333
V2 = 14142...

The real numbers can be represented geometrically as points on a number line called the real line.

=2 -1 3 0o 1
3
THE ALGEBRAIC PROPERTIES

The real numbers can be added, subtracted, multiplied, and divided (except by 0) to produce more
real numbers under the usual rules of arithmetic.

There are three special subsets of real numbers.
1. The natural numbers, namely 1, 2, 3, 4

2. The integers, namely

0, £1,+£2 +3,...

3. The rational numbers, namely the numbers that can be expressed in the form of a fraction ,
where( m and n) are integers and n # 0,

Examples are:
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INTERVALS

¢ A subset of the real line is called an interval if it contains at least two numbers and contains
all the real numbers lying between any two of its elements. For example, the set of all x> 6
real numbers X such that is an interval. The set of all nonzero real numbers is not an interval;
since 0 is absent, the set fails to contain every real number between -1and 1 (for example).

Notation Set description Type Picture
Finite: (a, b) {x|a < x < b} Open
a L]
[a, b] {x|la = x = b} Closed
a b
[a. b) {x|la = x < b} Half-open
a ]
(a, b] {x]a < x = b} Half-open
a b
Infinite: (a, o) {x|x > a} Open -
a
[a, o) {x|x = a} Closed
a
(—oo, b) {x|x < b} Open - 3
(—oo, b] {x|x = b} Closed - »
(—oo, o) R (set of all real
numbers) Both open -
and closed

EXAMPLE 1 : Solve the following inequalities and show their solution sets on the real line.

6

@ 2r— 1 <x+3 b -F<Ax+1 (@©_—7=5
(a) 2r—1=<<x+3
2x<<x+ 4
— — I
=4 0 1 4

The solution set is the open interval (—oo, 4)
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(b) — X < 2x + 1

—x =l bx + 3 Multiply both sides by 3.
0 <<7x + 3 Add x to both sides.
—3 == Tx Subtract 3 from both sides. ? 0 1 X

— = = X Divide by 7

7 ib)

The solution set is the open interval (—3/7, 0<)

| —a| # —al. |—=3| = 3, whereas —|3| = —3.
|a + b| less than |a| + |b]. If ¢ and b differ in sign,
la + b| equals |a| + |b]. In all other cases,

EXAMPLE : Illustrating the Triangle Inequality
|3 +5|=|2|=2 <|-3|+]|5]|=8
3 +5]=[8]=3] + 5]
|=3 — 5| =|-8| =8 = |-3| + |5

The distance from (X to 0) is less than the positive number a. This means that X must lie between
(—a and a).

I I |
| i | i |
l

i .
-1 X 0 a

[—hl—

Absolute value

The absolute value of a number x, denoted by |x|, is defined by the formula

., x = 0
Ixl = {— == 0
- ax -
EXAMPLE 2 Finding Absolute Values
3] =3, Jol=0. |—5]=—(—5)=5. |—|all = |a
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Absolute Value Properties

1. |—a | = | | A number and its additive inverse or negative hawve
the same absolute value.
2. |ab| = |a||f| The absolute value of a product is the product of
the absolute values.
3 al | e | The absolute value of a guotient is the gquotient
i b | & of the absolute values.
4. |la + bH| = |a| + |&] The triangle inequality. The absolute value of the

sum of two numbers is less than or egual to the
sum of their absolute values.

Ay bhsolnte WValunes amnd Intervals
If v is any positive number, then

s <] = e if arnd omnly 1§ x = ez

[ x| = e« if and only if —ex = x == «r

- =] = o if and only if x = a or x = —ur
oo =] = e« if and omlsy @f —er = x =

- x| = a if and omlsy if xr E= oa Oor x = —Lr

EXAMPLE: Solving an Equation with Absolute Values the equation | 2x -3| =7.

Solution By Property 5, 2x — 3 = +7, so there are two possibilities:

Equivalent equations
x—3=7 x—3=-7 without absolute values
2y = 10 2r=—4 Solve as usual.
x=35 r=—2

The solutions of [2x — 3| = 7 are x = 5 and x = —2.

EXAMPLE: Solving an Inequality Involving Absolute Values Solve the inequality.

@ [2x—3| =1 (b) |2x — 3| =1
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Solution
(a) [2x — 3| =1
—-1l=2x—-3=1 Property 8
2=2x=4 Add 3.
|l =x=<12 Divide by 2

The solution set is the closed interval [1, 2] (Figure 1.4a).

(b) 2x — 3| = 1
2x—3 =1 or 2x— 3= -1 Property 9
x — % :_’% or x — % = —EL Divide by 2.
r=2 or xr=1 Add —
The solution set is(—oc, 1] U [2, co) (Figure 1.4b).
& - =
1 2
(a)
1 ;
(b)
Solved Peroblems
5 —2x > 4 6. B —3x =5
T. 5x — 3 = 7 — 3x B. 3(2 — x) = 2(3 + x)
1 7 Hh — x 3x — 4
. —_ — = Ty 4+ — . Lol
9. 2x = Tx 3 10 3 5
- 1 x+ 5 12 4+ 3x
11.51’_1—2]'-::3{.!r—|5] 12. — - - 2
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5. 2x>4 = x< -2 -2 *
6. B—3x>5 = —3x>-3 = x<1 : + X
7. 5x—3<T7—3x = 8x <10 = x< 3 B *
8 32—x)>234+x) = 6 —3x>6+2x
= 0>5x = 0>=x 2 + X
9. 2x—3=>Tx+¢ = —1— 1 >5x
= {(-¥)>xor —1>x £ '
10. 8% < 3 = 12 -2x < 12x— 16
= 28 < 14x = 2 <x S X
1. 2(x—2)<1x—6) = 12(x—2) < 5(x — 6)
= 12x — 24 < 5x — 30 = Tx < —6 or x < — & —647 *
12, — 35 < 1243 . (4x + 20) < 24 + 6x
= —44 < 10x = — T <x —3%575 X
Solve the equations (Absolute Value)in Exercises
13. |v|=3 4. |y = 3|=7 15. |2t + 5| =4
9 5
16. |1l = 1| =1 17. |8 = 35| == 18. [z = 1| =1
11 5 - 35] = 2 11|
Solution
13. y=3o0ory = —3
4, yv—3=T7o0ory—3=—-7 = y=10ory=—4
15. 2t+5=4o0r2t+5=—-4 = 2t=—lor2t=-—9 = t=—lort=—-3
6. 1 —t=1lorl —t=—1 == —t=00r t= -2 = t=00rt=2
17. 8—3s=%or3—35=—% = —35=—%0r—35=—22—5 = s=%0rs=%
18. 3 —1=lorf—1=—-1 = 3=20r5=0 = s=4o0rs=0
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Exercises with solution

Solve the inequalities in Exercises 19—-34, expressing the solution sets as intervals or unions of
intervals. Also, show each solution set on the real line.

19 |x| = 2 20 |x| = =2 Z21. |r — 1| = 3
22, |r + 2| = 1 23, |3y — T| = 4 24, |2y + S| = 1
= = 3 1 1
Z25. |7 — 1 = 1 26, |5 = — 1 = 27|13 — x| = =
2 1
ZR. |57 — 4| == 3 29, |2s| = 4 3. |x + 3| = >
3. |1 — x| = 1 32. |2 — 3x| > S 33 "",';ll_l
34, |3 || = Z
Solution
19. —2 < x = 2: solution interval ( —2, 2) —2 3 *
20. —2 =< x =< 2; solution interval [—2, 2] > - » X
2. 3 <t—1<3 = —2 <1t< 4; solution interval [—2. 4] -2 4 !
22, - 1<t+2<1 = —3 <t=< —1:
solution interval (—3, —1) 3 7 >t
23, —4<3y—7<4 = 3<3y<1l = l<y<ll;
solution interval {:1._]_Tl 1 113 Y
24, —1 =2y +5 <1 = —6 < 2y < —4 = —3 <y < —2:
soluti int 1(—3,—2 .
solution interval ( . ] 3 —5 v
25. —1<z2—-1<1=0<2<2 = 0<z<]10;
solution interval [0, 10] 0 10 £
26, —2<EL _1<2 = —1< L <3 = —2<z<2
solution interval [— %._2] —%5 ] > 7

Solve the inequalities in Exercises 35—42. Express the solution sets as intervals or unions of
intervals and show them on the real line.
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38,

41.

35.

36.

xt = 2 36. 4 = x? 37. 4 = x2 = 9
%c:xl-::% 39. (x — 1) < 4 40. (x + 3)2 = 2
¥ — x =0 42 x? —x — 2 =0

x2 <2 = |x| < V2 = -2 <x< V2
solution interval (—v"{i ﬁ) X

4<=x = 2 <|x|] = x>2 or x << —2;

solution interval (—oo, —2] U [2, o) = r

I~

37. 4= x2 <9 = 2 < x| <3 = 2<x<3or2< —x<3

= 2 < xXx << 3or—3 < x < —2;

soluti int Is (—3. —2 2.3 -

solution intervals ( . Y2, 3) -3 — 5 3 3 X
3B leoexPecl = lox<cl = tlaox<cloriac —x<l

= leox<lor— 1 <x<—1;

ion i _ 1 _ 1 11 .

solution intervals (— 1, yu (i) —<7 —$73 153 Vi X
39. (x— 1P <4 = |x— 1| =2 = —2<x—1<=2

= —1 < x < 3; solution interval (—1, 3) : 3 X
Tutorials

¢ proof of the triangle inequality Give the reason justifying each of the numbered steps in
the following proof of the triangle inequality.

la + b]* = (a + b)? (1)
= a’ + 2ab + b*
= a’ + 2|a||b| + b* (2)
= |a|* + 2]al|b| + |b]? (3)
= (|a| + |b|)
la + b| = |a] + |b] (4)
& Prove that |ab| = | a||b| for any numbers a and b.

*
#% Graph the inequality |x| + |y| = 1.

a. If b is any nonzero real number, prove that | 1/b| = 1/|b|.

a
= H for any numbers ¢ and b # 0.

a

b. Prove that b

/7
0’0
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CHAPTER 2
1.3 Functions and Their Graphs

¢ Functions are the major objects we deal with in calculus because they are key to describing
the real world in mathematical terms.
¢ This section reviews the ideas of functions, their graphs, and ways of representing them.

+* Functions; Domain and Range
The area of a circle depends on the radius of the circle.

The distance an object travels from an initial location along a straight line path depends on
its speed.

* In each case, the value of one variable quantity, which we might call y, depends on the
value of another variable quantity, which we might call x. Since the value of y is completely
determined by the value of x, we say that y is a function of x.

y=flx)  (“yequals f of x”)

s In this notation, the symbol f represents the function. The letter X, called the independent
variable, represents the input value of f, and y, the dependent variable, represents the
corresponding output value of f at X.

L)

DEFINITION Function

A function from a set D to a set Y 1s a rule that assigns a unigue (single) element
flx) e Y to each element xe D.

X - f - flx)
Input COutput

(domain) (range)

» The set D of all possible input values is called the domain of the function.
» The set of all values of f(x) as x varies throughout D is called the range of the function.

» The range may not include every element in the set Y.
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I = domain set ¥ = set containing

the range

FIGURE 1.23 A function from a set 2 to
a set ¥ assigns a unigue element of ¥ to
cach element wm ¥

EXAMPLE 1  Identifying Domain and Range

Verify the domains and ranges of these functions.

Function Domain (x) Range (y)

y=x (=00, 00) [0, o0)

v =l (—oo, 0)U(0, co) (—oo,0)U(0, c0)
y=Vx [0, ) [0, )
v=V4—-x (—oo, 4] [0, 00)
y=VI1—-x’ [—1,1] [0, 1]

Solution The formula y = x gives a real y-value for any real number x, so the domain
is (—00, 00). The range of v = x? is [0, o0) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,
y= [\fu)l for y = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide
any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real num-
bers, is the set of all nonzero real numbers, since y = 1/(1/v).

The formula y = Vi gives a real y-value only if x = 0. The range of y = Vi is
[0, o0 ) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — xis [0, 00),
the set of all nonnegative numbers.

The formula y = V1 — x? gives a real y-value for every x in the closed interval
from —1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real

number. The values of 1 — x? vary from 0 to 1 on the given domain, and the square roots
of these values do the same. The range of V1 — x?is [0, 1]. n
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Graphs of Functions
¢ If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f.

{(x, filx)) | xe=D}.

F.1 persimion.  The set of all solutions of an equation in x and v is called the solu-
rion sef of the equanon, and the set of all points in the xv-plane whose coordinates are
members of the solution set is called the graph of the equation.

Example: Use point plotting to sketch the graph of ('y = x* )Discuss the limitations of this method.

L
"
L
L]

J

¥ v + " ol
= \
i o= (x. w) 1 g ] 1 & -
o0 ik i, day N T -
1 1 {1, 1) & - L=
> E] (2 <) ) L L [
EY a ENCT) - 4 - o b 4 - *
—1 1 —i, L) \ 3 W= x= E J
-2 & (—2, ) N LR
3 =] —3_ oy = __-' B |- &
1 1 1 1 1 1 - 1 1 1 1 1 1 -
—3 —=—1 | | =2 3 —3 —2 —1 [ | =2 3

Example: Sketch the graph of(y =x).

Solution

If (x<0), then (Vx) is an imaginary number. Thus, we can only plot points for which (x > 0), since
points in the xy-plane have real coordinates. The graph obtained by point plotting.

W

x |¥=x (. 3 5

i 0 {0, 1) v — )

1 ! T T T e

2 2 (2, N2y = (2, 1.4) 1 e

3 ey (3. W30 =3 LT - . . . . -
4 = 4. 2} 1 > A 4 -

Example Sketch the graph of (y>—2y — x =0).

Solution

In this case it is easier to express in terms of y, so we rewrite the equation as (x =y?>—2y) Members
of the solution set can be obtained from this equation by substituting arbitrary values for y in the
right side and computing the associated values of x.

o
’
Il
I
o]
1

L, whk
&, — 2%
3. — 0k
[k CKK
{—i_ 1}
(0. 2
EET

[(=_ Bk

Ld

AR E=1 R =10 -

> =

T

|
¥

I
o
|
|
L]
|

f &
| b= D=k
I
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Example Sketch the graph of y=1/x.

Solution

Because (1/x) is undefined at x=0, we can only plot points for which x # 0. This forces a break,
called a discontinuity, in the graph at (x = 0).

(W [ )
C£-3)
(5. =20

B

LE_ BF

(=. £)

(. 2)
% —=)
—%- —=)
— i —0m
(—=—2¥
(—=. —% ¥

'.I!'“l- - |\.| 71} |I

|
i
I-
i -
e 'R R
l']I -|.|
W
b
[T
= |l
1]
[ {b=] = | 19 | |l

o (]| Wb [ | =] ]|

|
W
|

Greatest integer function is a piece-wise defined function.

¢ The function, or rule which produces the "greatest integer less than or equal to the number"
operated upon, symbol [x] or sometimes [[X]].
% The greatest integer function is a piece-wise defined function.

+¢ If the number is an integer, use that integer.
+¢ If the number is not an integer, use the next smaller integer.

Examples:
number | the greatest integer less than or equal to the number
X | [x]
4 | [4] =4
4.4 | [4.4] =4
-2 | [-2] =-2
-2.3 | [-2.3]=-3
24| =2, [19]=1, |0] =0, |-12]| = -2,
12| =2, 02| =0, |-03]=-1 |[-2]=-2
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Solved questions
Find the domain and range of each function.

1. flx) =1 + x2 2. fx) =1 — Vx
3. F(1) = ——= 4. F(r) = —
Nt 1 + W
! 1
5. glz) = Va4 — =2 6. z(z) =
V4 — =2
Solution
1. domain = (—oc, 0c); range = [1,00) 2. domain = [0, oc); range = (—oo, 1]

3. domain = (0,0¢); yinrange = y = ?IT =0 = yi= %and y = 0 = y can be any positive real number
= range = (0, oco).

4. domain = [0,0c); yinrange = y = #‘ﬁ ,t > 0. Ift =0, then y = 1 and as t increases, y becomes a smaller

and smaller positive real number = range = (0, 1].

5. 4—22=(2-2)(2+2) >0 & z € [-2.2] = domain. Largest value is g(0) = 1/1 = 2 and smallest value is
9(—2) = g(2) = /0 =0 = range = [0, 2].

¢ Find the domain and graph the functions in Exercises 15-20

15. fix) = 5 — 2x 16. fix) = 1 — 2x — x~
17. g(x) = Vx| 18. gi(x) = V—x
19. F(zr) = rf]z| 20. G(r) = 1/]|r]|

21. Graph the following eguations and explain why they are not
graphs of functions of x.

a. |v|=x b. v* = x“

22, Graph the following eguations and explain why they are not
graphs of functions of x.

a. |x|+ |v| =1 b. |x + ¥|=1

+ Solution
We have first draw the function and then determine the domain

15. The domain is { —oo, o). 16. The domain is (—oo. o))

£ {3}

a2t
- Fx)=1—2x— x>
" Fx) = 5 — 2x = 1
2 - a \
5 =% = 5 * =
-3 _— - a1
Y .
—a +
—a
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17. The domain is {—oo, oo).

-4 =3F =2 =1 1 2 3 4
x+y=1 y=1-—x
x+yl=1<« or = or
X+y=-1 y=-1-—-x
21. Neither graph passes the vertical line test
(a)
H
T vl =x
2t
0 I *
2
—q

22. Meither graph passes the vertical line test
(a)

¥

|2l + ]yl =1

18. The domain is (—oo, 0].

£ (x)

s

20. The domain is (—oc, 0) U (0, o).

£({x)

Fix)=—

1=l

(b)

(b)

FIRST CLASS
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+ Greatest integer function Piecewise-Defined Functions
Graph the functions in Exercises 23-26

23, flx) = {r 0=x =1
2 — =x, l << x = 2
24, ULT]={1—_'L’_, 0=x=1
= 2 - x, Il = x = 2
zifwm:={3_* = !
2x, = ]
26. G(x) = {1,."_1', x << 0
x, 0 =x
Solution )
B AR pof o e e :

2—x. l=x=2
1 \
x
ax

L L
-3 -2 -1

27. Find a formula for each function graphed

a. ¥ b. ¥
(1, 1)
1 20— &
| | |
. Ly
of 2 0 1 2 3 4 !
Solution

27. (a) Line through (0, 0) and (1, 1): y=x
Line through (1, 1) and (2, 0): y = —x + 2

f(x) = x, 0<x<1
Tl —x+2, 1<x<2

(2, D<x<1
0, 1<x<?2
2, 2<x<3
0, 3<x<4

(b) f(x)=
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28. a. ¥ b. ¥
1 ]
(2. 1)
T\:ﬁ_“\u 2
| 2 s "
29. a. v b. »
f—l.l}l]_il.l} L
|- 3 " T ad
lf—lt’l’}//"'?l:—lh 3. —1)
30. a. v b. W
(T, 1)
1
| T T
I R N p
I ol T T 3 2
[ ""'L — 4
o] T T
31. a. Graph the functions f(x) = x/2 and g(x) =1 + (4/x) to-
gether to 1dentify the values of x for which
x 4
b. Confirm your findings in part (a) algebraically.
32. a. Graph the functions f(x) = 3/(x — 1)and g(x) = 2/(x + 1)
together to identify the values of x for which
3 2
=
x=1 x+1
b. Confirm your findings in part (a) algebraically.
¢ Solution
31. (a) From the graph, 5 > 1 +% = xe(=2,0U(4, )
4 4
. 4 P =2x=§ (x=4)x+2)
x>0 3-1-2>0= =F/=>0= ———=>0 e s
= X > 4 since X is positive; *
x<0: 2—1—250 = $=2=8 o o (=dd f(x) = 3
= X < —2 since X is negative; . (4.2) .
sign of (x —4)(x + 2) )/ 4
N
+ _ + ['2151}
-2 4
Solution interval: (—2,0) U (4, o)
otx) = 144

i
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1.4 Identifying Functions; Mathematical Models
¢ There are a number of important types of functions frequently encountered in calculus. We

identify and briefly summarize them here.

¢ Linear Functions: A function of the form for constants( m and b), is called a linear
function. Figure below shows an array of lines where so these lines pass through the

origin. Constant functions result when the slope m=0 .

¥
|
‘
I
(][

=l
-
=}

-

[+

¢ Power Functions: A function (f(x) = x*) where a is a constant, is called a power function

There are several important cases to consider.
(a)a=n ,,, a positive integer

The graphs of (f(x) =x") for n=1,2,3,4,5,
: y 3 Vo 4 Y ou= oS

3 V=X

FIGURE 1.36 Graphs of f(x) = x",n = 1, 2, 3, 4, 5 defined for —00 < x < 00,
(b) a=—1 or a = —2.
The graphs of the functions f(x) = x~' = 1/x and g(x) = x> = 1/x? are shown in
"k — 1 1 - — A
P [\
= ; —— ,__ff—/”; . H.\_*_, N
o 1
- o

I crrre=midrns W == [N
Flzaamngre=c N ==
- Sabe s EEET & TR iy
1 B s sres e = D
=25
= faor part

s faarncTtiorns oo b

FIGLULUIRE 4137 CErraplhhs of thwe
fzad cr =— — 1 aamd for pract (b ce — @ —I23



Mathematics Materials

Lecturer A.M.Alazzawe

FIRST CLASS

SEMESTER ONE
1 13 2
{(‘]- a = E.. E.. E.. andg_
The functions f(x) = x'2 = Vxand g(x) = x'/* = Vx
¥ ¥
v = % "
yE y=%
1+
I ¥ 1 ¥

0 1 0 1

Domain: ) = x =< 2o - Domain: =—2o = x < 2

Range: 0= y = 2c Range: —o¢ =< y =< oo

.".
.1'.
¥ = w23
L \_
L x 1 >

0 1 0 1

Domain: () = x < 2c Domain: —20 < x << o¢

Range: 0= y = 2c Range: 0= y = =c

. . . a . 1 1 3 2
FIGURE 1.328 Graphs of the power functions fix) = x* fora = =, 33" and 3 -
¢ Polynomials: A function p is a polynomial if
plx) = apx™ + dpo1x" 1+ - + aix + ap
where (n) is a nonnegative integer and the numbers (ao,a1,a2, 5...... an ) are real constants (called

the coefficients of the polynomial). All polynomials have domain (- oo, ) . If the leading
coefficient (an#0) and (n > 0) then n is called the degree of the polynomial. Linear functions with
(m # 0) are polynomials of degree 1. Polynomials of degree 2, usually written as

plx) = ax® + bx + ¢

plx) = ax® + bx* + cx +d

are called quadratic functions. Likewise, cubic functions are polynomials

of degree 3. Figure below shows the graphs of three polynomials.

v =(x — 2¥x + 1o — 1)
16 ]

—i3
-
—10

-1z

(b}

FIGURE 1.39 Graphs of three polynomial functions.
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+» Rational Functions: A rational function is a ratio of two polynomials:

Flx) — ik
o il )

where p and q are polynomials. The domain of a rational function is the set of all real x for
which ( q(x) #0) For example,

2x* — 3
flx) = x + 3

the function is a rational function with domain 1*l ¥ # =4/7} Its graph is shown below

¥ %
1 y=llx+ 2
¥ 2 - | Ixt— 1
4k L y= Sx +_| Hx 3 6 -
3x+ 2
ry o —-—
22 3 4
—2x—3
2r ¥= S+ a '—“‘"-"=;
1 J oA
— = - ‘ .,
1 1 . 1 - 1 x 1 1 1 — 1 1 1 I S s
— =2 al 2 4 —5 ol 5 10 —4 —2 0 2 4 6
— - i |
= f 1k =T
b |-
2 -
I~ —= NOT TO SCALE |
44 - 6 H
| |
) Fl
{a) by {ch

% Algebraic Functions: An algebraic functionis a function constructed from polynomials
using algebraic operations (addition, subtraction, multiplication, division, and taking roots).

+ Exponential Functions: Functions of the form (f(x) = a*) where(a>0) the base is a positive
constant (a # 1) and are called exponential functions. All exponential functions have

domain (-, c)and range (0. ) So an exponential function never assumes the value 0.
Logarithmic Functions These are the functions fix) = log,x, where the base a # 1 is
a positive constant. They are the imverse funcrions of the exponential functions,

\ i RTE) ¥ v =1 — x)*

‘.

B ¥ o= %[,\': 1)23
2\ ya L=
,f
1 T _
- A Y
1 x W x 1 x
-1 0 o 0o 51
—1 7
2
2 b
Y

Ca) (b) (L]

[T

FIGURE 1.41 Graphs of three algebraic functions.
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\
\
B !
l_."
|
2 "
-|—|5"—y_""
\\
/
K
L
* L
7
]
W
/
/
.-|.r|1

- - i‘. 2= . 2=
S 1 e . g I 1 -h"{ 1 _ .
— - ar A M = " -
- — - -FE =
(a) flxy) = si;m x 0k P = s K
FIGURE 1.52 Giraphs of the sine and cosine fanctiomns.

E B
=R

=
o =
=
= = - — e
- - L T — .
—1 —os —u —O_s o_s ]
(a) W o= T, o= I, o o= IO (B W o= 2% o= F— = LO—=

FIGURE 1.5%3 Giraphs of exponential firmsctiomns.

EXAMPLE 1 Recognizing Functions

Identify each function given here as one of the types of functions we have discussed. Keep
in mind that some functions can fall into more than one category. For example, f(x) = x?
is both a power function and a polynomaial of second degree.

4

(@) flx) =1+ x — %.‘rj (b) glx) =7  (c) hlz) = z
(dy W = 'un-[:f — —
Solution

(a) flxd =1+ x — %.‘:‘5 is a polynomial of degree 5.

(b) gix) = 7 is an exponential function with base 7. Notice that the wvariable x is the

exponent.
() hi(z) = z'is a power function. (The variable = is the base.)
(d)y »i) = :-'.in{f — E 15 a tngonometric function. [ ]

Increasing Versus Decreasing Functions:

Function Where increasing Where decreasing

v = x2 0=x =< 00 —oo <= x =0

v=x —O0 = x = DO MNowhere

¥y = I/x MNowhere —o0 =2 x << Dand 0 << x =< 0O
¥ = 1/x? —oo =< x =< 0 0 =< x =< oo

y= o 0 =x = o0 Nowhere

» = x32/3 0= x =< oo —oo < x =0

Even Functions and Odd Functions: Symmetry

DEFINITIONS Even Function, Odd Function

A function v = f{x) is an
even function of x if fil—x) = Ffilx).
odd function oef x if fl —x) = — filx).

for every x in the function’s domain.

12
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The names even and odd come from powers of x. If v 1s an even power of x, as in
y = x* or ¥ = x*, it is an even function of x (because (—x)" = x* and (—x)* = x*). If »
is an odd power of x, as in y = x or y = x, it is an odd function of x (because
(—x)' = —xand (—x)’ = —x7).

(i) For f(x) =3x> — x we have
f(=x) =3(—x)* = (—x) = =323 +x
= —3x—x) = —f(x)

So 3x3 — x is an odd function.

. x?
(i1)) For f(x) = —
2 2
fln=—2"__ X _rm

1 +(—x)* 14 x?
so this i1s even.

(iii) If f(x) = ——— then
x=—1
B 2(—x) o 2x o
f(=) = (—x)2—1  x2—1 fx)
so f(x) 1s odd.
2
(iv) If f(x) = T we have
(=02 X
AN —x+1 1—x

This is not equal to f(x) or —f(x) and so this function is neither
odd nor even.

¢ The graph of an even function is symmetric about the y-axis. Since f(-x) = f(x)a point (X,

y) lies on the graph if and only if the point ( x,y) lies on the graph (Figure a). A reflection
across the y-axis leaves the graph unchanged.

13
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(@)

¢ The graph of an odd function is symmetric about the origin. Since f(-x) = -f(x) a point (X,
y) lies on the graph if and only if the point(-X, -y) lies on the graph (Figure b). Equivalently,
a graph is symmetric about the origin if a rotation of 180° about the origin leaves the graph
unchanged. Notice that the definitions imply both X and must be in the domain of f.

(b)

EXAMPLE 2 Recognizing Even and Odd Functions
fix) = x* Even function: { —x)® = x7 for all x; symmetry about y-axis.
Fixd) = x* + 1 Even function: { —x)® + 1 = x~

+ 1 for all x:; symmetry about
y-axis (Figure 1.47a).

W =_l|:lZ =+ 1
|IIIII Illl'
Y ! .
."\-“ y .I,-"I Y = x
-.-'\.__Hx- ;r:-__ ..--
-‘x__h.___#/z-
LE: ] {b)
FIGURE 1.47
fix) =x Odd function: {—x) = —x for all x; symmetry about the ongin.
fix)=x+ 1 MNotodd: fl(—x) = —x + 1,.but —f(x) = —x — 1. The two are
not equal.
MNoteven: (—x) + 1 # x + 1 for all x # 0 (Figure 1.47b). [

14
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¢ Solved question
In Exercises 1-4, identify each function as a constant function, linear function, power

function, polynomial (state its degree), rational function, algebraic function, trigonometric
function, exponential function, or logarithmic function. Remember that some functions can

fall into more than one category.

L a. f(x) =7 -3 b. g(x) = Vx
I. (a) linear, polynomial of degree 1, algebraic. (b) power, algebraic.
_x' =1 .
c. hix) = 21 d. rix) =8
(c) rational, algebraic. (d) exponential.
2.a Fi)=1"—1 b. G(r) =5
2. (a) polynomial of degree 4, algebraic. (b) exponential.
c. Hiz) = V=" + 1 d. R(z) = V27
(c) algebraic. (d) power, algebraic.
3. a. _'|'=3+2r b. _1-=x5’f"'—2_1:+ 1
x=1
€. y = tan wx d. v = log,x
1 z
4. a. v = logs (—) b. f(z) =
g Vz 41
ofv) = 2/ = = 1, m
c. glx) =2 d. w = 5cos (2 = 6)

¢ Solved questions
Increasing and Decreasing Functions
Graph the functions in Exercises 7—18. What symmetries, if any, do the graphs have? Specify the

intervals over which the function is increasing and the intervals where it is decreasing.
1
3

7. v = —x 8. y=——
X
7. Symmetric about the origin B, Symmetric about the y-axis
Dec: —oo = X << oo Dec is decrease Dec: —oo = x =< 0
Inc: nowhere Inc is increase Inc: 0 = x = oo

|

9. y=—5 10. y =

=

15
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9. Symmetric about the origin 10. Symmetric about the y-axis
Dec: nowhere Dec: 0 << x << oo
Inc: —ooc <= x << 0 Inc: —ooc << x << 0
0 < x < oo
» ¥

e % =
-11
1. y = Vix| 12. y = V—x
13. y = x¥/8 14. y = —4Vx
15. y = —x? 16. v = (—x)*?
17. y = (—x)¥° 18. y = —x3

¢ Solved question
Even and Odd Functions
In Exercises 19-30, say whether the function is even, odd, or neither. Give reasons for your
answer
19. f(x) =3 20. f(x) =x
19. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the

function is even.

20. f(x) =x~% = & and f(—x) = (—x)° = L; = — (&) = —f(x). Thus the function is odd.

(—x)°

21, f(x) =x* + 1 22, flx) =x* + x
21. Since f(x) = x% + 1 = (—x)” + 1 = —f(x). The function is even.

22. Since [f(x) = x2 4 x] # [f(—x) = (—x)* — x] and [f(x) = x2 + x] # [-f(x) = —(x)* — x] the function is neither even nor
odd.
23 g(x) =x" + x 24, glx) =x*+ 7 -1

23. Since g(x) = x* +x, g(—x) = —x* —x = —(x? + x) = —g(x). So the function is odd.

24. g(x) =x'+3x2 4+ 1 = (—x)* + 3(—x)* — 1 = g(—x), thus the function is even.

25. g(x) = — 26. glx) = =
=1 x =1

27. h(1) = 7 28. h(r) = 7|

29. h(r) = 21 + 1 30. h(r) = 2|1 + 1

16
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1.5 Combining Functions; Shifting and Scaling Graphs
In this section we look at the main ways functions are combined or transformed to form new
functions.
Sums, Differences, Products, and Quotients
Like numbers, functions can be added, subtracted, multiplied, and divided (except where the
denominator is zero) to produce new functions. If f and g are functions, then for every X that
belongs to the domains of both f and g (thatis, for xe D(f) M D(g)) (that is, for ), we define
functions and fg by the formulas
(f + glx) = fix) + gix).
(f — 2lMx) = flx) — g(x).
(fglx) = flx)g(x).
Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition
of the real numbers f(x) and g(x).

At any point af-D{ﬂ n El{g} at which g(x) # 0, we can also define the function f/g

(é) (x) = ;E:J} (where gix) # 0).

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of [ by

(eflix) = cfix).
EXAMPFPLE 1 Combining Functions Algebraically
The functions defined by the formulas
Ffilx) = Wx and gi(x) = VW1 — x,

have domains £ ) = [0, oo and Meg) = (—oo, 1]. The points common to these do-
mains are the points

[0, cc)ymi{—oo, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the oo functions. We also write Jf - o for the product function fo.

Function Formula Dormain
f+e f + 2)x) = Vax+ V1 — x [0. 1] = D(f) N XNg)
fF— e (Ff — g)x) = Vx — V1 —x [0, 1]
=z — f (g — x)y = V1T —x — Vi [o. 1]
—_—
- (fF-elx) = fixleix) = xll — x) [0, 1]
F _ fixy = .
f..l'rg E{.‘t‘] = g[.ﬁ.‘} = x'lﬁ [ﬂ, 1)ix = 1 excluded)
. zilx) _ I|']_ — o )
=l r Jr.{_a.J = Foa — - (0, 1] (x = 0 excluded)

17
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——"/ P —
= f i) = Wl — @ // * s m‘\~\l_f{x]___= W
¥ = dFf+ gWx) /__ o = A
el P
4 ’,.»"1‘ ; gilx) — o il _______._.-_ o
} 1 Flay + glak - T w =
: j"-----_--i_-;::["-] ey st ."-/ 1 1 1 1 -.'I
x o 1 1 3 ) 1 -
o . 5 = E 5

< Composite Functions

¢ Composition is another method for combining functions.

DEFINITION

defined by

lies in the domain of f.

Composition of Functions
If f and g are functions, the composite function [ ¢ g (*f composed with g”) is

(f = glix) = flglx)).

The domain of f @ g consisis of the numbers x in the domain of g for which g(x)

+¢ The definition says that (f0g) can be formed when the range of (g) lies in the domain of f.
To find ((f0g)(x)) first find g(x) and second find f(g(x)).

r—s g glx) f — flglx) Ny
e g
v
1:‘/ /
ry
g
II
g2ix)
EXAMPLE 3 Finding Formulas for Composites
If f(x) = Vxand g(x) = x + 1. find
(a) (f = g)x) (b) (g = fix) () (f = fix) (d) (g ° g)x).
Solution
Composite Domain
(a) (f = glix) = flg(x)) = Vglx)= Vx+1 [—1, o)
(b) (g o x) = g(f(x)) = flx) + 1 = Vx + 1 [0, c0)
(€) (f » PHx) = f(f(x)) = Vfix) = VVx = x4 [0, o0)
(d) (geglix) =glglx)) =glx) + 1 =(x+ 1)+ 1=x+ 2 (—oo, o)

18
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+ Shifting a Graph of a Function

L 44

hand side of the formula (y= f(x)).

To shift the graph of a function (y= f(x)) straight up, add a positive constant to the right

% To shift the graph of a function (y= f(x)) straight down, add a negative constant to the right-

hand side of the formula (y= f(x)).

¢ To shift the graph of (y=f(x)) to the left, add a positive constant to x.

* To shift the graph of (y= f(x)) to the right, add a negative constant to x.

Shift Formulas

Vertical Shifis

Horizontal Shifts

v=flx) +k Shifts the graph of fup k units if k = 0
Shifts it down | k| units if k < 0

v=flx+h) Shifts the graph of fleft h units if h = 0
Shifts it right | i |units if h < 0

) v . . EXAMPLE &  Shifting a Graph
\ - jy=x"+2 . .
I'Ill'l 'Il'r JET (a) Adding 1 to the right-hand side of the formula v = x~ to get v = x~ + | shafis the
) = . - -
.II'||I". I-I."I.-_ . graph up | unit (Figure 1.54).
Wy == (b) Adding —2 to the right-hand side of the formula y = x~ to get ¥ = x~ — 2 shifts the
",".\"\ .-","I." graph down 2 units (Figure 1.54).
Wy A 5 . - . . .
'!,\:". ,-"'l fly=xt=2 (¢) Adding3toxiny = x”toget y = (x + 3)° shifts the graph 3 units to the left (Figure
WA | /Y 1.55).
Lunit, % | S {d) Adding —2 tox in y = |x|, and then adding —1 to the result, gives v = |x — 2| — 1
R\-,]\}'“ and shifts the graph 2 units to the right and | unit down (Figure 1.56).
1 . ¥
-2 of k2
-1 |\3 units
2 Add a positive Add a negative
constant to x. ,  constanttox. ¥
- . ] =+ 4 y=|x-2]-1
FIGURE 1.54 To shift the graph y={x+ 3} I fp = 22 ."ll' =fx—2)
of fix) = x? up (or down), we add \ . [
positive (or negative) constants to I\"\ ,-"' 1
the formula for f {Example 4a 1 (\‘ I.-"" __" __; ] _; '|1 l:, o
and b). 1 1 P Ry x
-3 of 1 2

FIGURE 1.55 To shift the graph of y = 1o the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x
(Example 4c).
o .
* Solved question

Sums, Differences, Products, and Quotients

In Exercises 1 and 2, find the domains and ranges of f, g, f + 2, and

1. fix)=x, glx)=Vx-1
2. flx) = Vx+1, glx)=Vx-—1

19

FIGURE 1.56 Shifting the graph of
¥ = x| 2 units to the right and 1 unit
down (Example 4d).
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. Dy —so<x<o0, D x2>21 = Dp,=Dy: x2L R: —0o<y<oc,Riy20R.:y=21LR,: y=>0

2. Dy: x+120 = x>-1.D;: x—1>0 = x> 1. Therefore D, = D;: x = 1.
Re=R;: y>0,Resi y> V2, Ryt y >0
In Exercises 3 and 4, find the domains and ranges of f, g, f/g, and g/ f.
3. fix) =2, gix)=x"+1
4. fix) =1, glx) =1+ Vx
3. Di: —co<x<o0,Dyt —oo<x<oo = Dy —oo < x < oosince g(x) # 0forany x: D,y: —o0 < x < 00
since f(x) # O forany x. R;: y=2,R;: y> 1Ryt 0 <y <2, Ryt y > %

4. Di: —oo<x<o0,D: x>0 = Dy, x = 0since g(x) # Oforany x = 0; D¢ : x > Osince f(x) # 0
foranyx > 0. Re: y=1LR;: y> LRy 0<y<LRys:y>1
Composites of Functions

5. f fix) =x + Sand g(x) = x* — 3. find the following.
a. f(g(0) b. 2(£(0))
c. flglx)) d. g(f(x))
e. flf(—=3)) f. g(g(2)
g f(flx) h. g(g(x))
solution

5. (a) f(g(0) =f(—3)=2
(b) g(f(0)) =g(5) =22
€) flgx) =f(x?—-3)=x>-3+5=x*+2
(d) gf(x) =g(x+5)=(x+5°-3=x>+10x+22
(e) f(f(—=5))=1(0)=5
(f) g(g(2) =g(l)=-2
(g) fifx)=fx+35)=(x+5+5=x+10
(h) glegx) =gx* -3 =x>-3-3=x'-6x>+6

6. If f(x) =x — land g(x) = 1/(x + 1), find the following.

a. f(g(1/2) b. g(f(1/2))
c. flg(x)) d. g(f(x))
e. f(f(2)) f. g(g(2)
g f(fix)) h. gig(x))

20
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7. Ifu(x) = 4x — 5, v(x) = x*, and f(x) = 1/x, find formulas for

the following.
a. u(v(fix)))

c. v(u(fix)))
e. flulv(x)))
. If f(x) = Vx.g(x) = x/4, and h(x) = 4x — 8, find formulas

for the following.

a. hig(f(x)))

c. g(hifix)))
e. flg(hix))
Let fix) =x—3, gix)= Vx,

press each of the functions in Exercises 9 and 10 as a composite in-

b.
d. g(f(h(x)))
f. flh(g(x)))
hix) = x*, and j(x) = 2x. Ex-

b. u(f{vix)))
d. v(f(u(x)))
f. flviuix)))

h(f(g(x)))

volving one or more of f, 2. ki, and j.

9.a. y=Vx-3 b. y=2Vx
c. v = x4 d y=4x
e. v=Vix-3)7 f. v=1(2x —6)°
10. a. yv=2x — 3 bh. v = X3P
c. v=x" d yv=x-206
e. v = 2Vx -3 f. y=Vx -3
solution

9. (a) y=~1f(g(x))

(c) y=glg(x))
(e) y = g(h(f(x)))

10. (a) y ={(j(x))

na.

(c) y = h(h(x))
(e) y = j(elf(x))

=) s
- o — F e
B. x &+ = o
. W — S W E — S
o o
R > — 1
e 1+ L e
£ L .
1Z2. Copy and complete the following tablc.
==k Fieal O = =
- L 11 =
o — e
b - S Fr——
<. z e [ES
a e 2 [ES]

21

(b) y = j(g(x))
(d) y=j(x)
(f) y = h(j(f(x)))

(b) y = h(g(x)) = g(h(x))
(d) y = fi(f(x))
(f) y = g(f(h(x)))
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solution

1

L. g(x) f(x)

(fog)x)

(a)
(b)

(c) x? vEX—35

X = =1
1 ]
© 1+1
x=1 X
® & .
X X
Shifting Graphs
1S. The accompanying figure shows the graph of » — —x2 shifted to

o new positions. Write eguations for the new graphs

Position (Bl

15. (a) y=—(x+7)

16

17.

18

The accompanying figure shows the graph of » = x? shifted to
weo new positions. Write eguations for the new graphs.

/Pn\:)sl ticor (a)
—_ 2
I » = x

Fosition {(b)

Match the eguations listed in parts (a)d(d) to the graphs in the ac-
companying figure.

(v — 1@ — 4 b. v =
(x + 2 + =2 . =

-

= g = (x — 2»*

(x 4+ 3

+ 2
—_— 2

o, =

Position 2 "'l

Positiomn 1

(—2 2n
FPosition 3
1

L L
—a4 —3 —=2/—

Position <

(—3_. —2)

Cl, —n

The accompanying figure shows the graph of » = —x2 shifted to
four new positions. Write an eguation for cach new graph.

L, k)

(<) /

22

x—17
3(x+2)=3x+6

(b) y=—(x—4)*
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16. (a) y=x>+3 (b)y y=x*-35
17. (a) Position 4 (b) Position 1 (c) Position 2 (d) Position 3

Exercises 19-28 tell how many units and in what directions the graphs of the given
equations are to be shifted. Give an equation for the shifted graph. Then sketch the original
and shifted graphs together, labeling each graph with its equation.

19. x* + y? =49 Down 3, left 2

20. x* + y? =25 Up3, left4

solution
19. 20. .
‘ e e ly-2) =28 y
Iliri-ﬂﬁ
P L
4
/ \
. Fi 1 “1
i !
= .
2 4 (3 =49 = +511-4 2 FR
& J;
, l_,-";
\\,\H_q, L
21. v =x° Left 1, down I
22, v = x23 Right 1, down 1
solution
21. 22,
¥ 1 f
I}'+|_={I+I::I'
3
¥y=x
1 \"\\ 2 "'u:[m .r"-#
t""'-»., \.‘"J
L * ¥ | 1 s
1 N f/
sl /I
3 -2 1 1 3
i BT
g yer=-n
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23, v = Vx Left0.81
24. y = —=Vx Right3
25. y=2x—-7 Up7
26. v = %[x + 1)+ 5 Down35,right |
27. y=1/x Up 1. right]
28. y = 1/x* Left2, down I
Graph the functions in Exercises 2948,
29. y=Vx+ 4 30. yv= V9 —x
3 vy = |x = 2| R2.y=|1-x|-1
solution
29, 30.
v
/‘/ -
FER RN
1 Dl e
9 1% 5 -2.% _1[ 2.5 5 7.5 8"
31. 32.
y
|
y=|1-x|-1
14
- X
1 2
_ =1
33y = )
35. vy = (x + 1)*° 36. v = (x — 8)*
3T, py=1 — x2° 38, v + 4 = 23
39. y=Vx—1-1 40. v = (x + 27 + 1
1 |
4l y=——> 2. y=1-2
43 p =L 42 44, y = —1
- V=3 - V=T33
— 1 _ 1
45, v = 46. v=——1
(x— 1) X~
47. v=—+ 1 48 = I -
= (x + 1)
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Chapter Three
Limits Using the Limit Laws
This section presents theorems for calculating limits.
The Limit Laws
This theorem tells how to calculate limits of functions that are arithmetic combinations of
functions whose limits we already know.

THEOREM 1 Limit Laws
If L, M, ¢ and k are real numbers and

lim fix) = L and lim g(x) = M, then

B o T=wrp
1. Sum Rule: li_rbn‘{ﬂx} + gix)) =L+ M
The limit of the sum of two ﬁmctinnsxis ;]'IE sum of their limits.
2. Difference Rule: Ii_rp{fl[.::] —gx))=L—M
The limit of the difference of two ﬁm;tiﬂfnﬁ is the difference of their limits.
3. Product Rule: JtI_i_IE_{fl[:r]l -glx))=L-M

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: lim(k- f(x)) = k- L

Xx—C
The limit of a constant times a function is the constant times the limit of the
function.
flx)

li == M=#0
coe glx) M

5. Quotient Rule:

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then

lun{j{x}]l""r‘ — Lr..".-r

x=+c

provided that L' is a real number. (If s is even, we assume that L = 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter 1s a real number.
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EXAMPLE 1 Using the Limit Laws

Use the observations lim,—.. &k = k and lim;—..x = ¢ (Example B in Section 2.1) and the
properties of limits to find the following limits.

. 3 2 . oxt 4+ xt—1 N e
(a) lim(x” + 4x- — 3) (b) lim - 5 (c) lim 4x- — 3
x—rc x—*c xc 4+ 5 x——2

Solution
(a) ]i.l'l'l'l.i.‘t’3 + 4x? — 3) = lim x4+ lim 4x* — lim 3 Sum and Dnfference Rules
X=—= X=— X = X=—C
== E‘3 -+ 4:‘."2 — 3 Product and Multiple Rules
lim{x* + x* — 1
. x4+ x?—1 _t—h:'{ )
(b) lim 2 = - 2 Cuotient Rule
—c x° 4+ 5 lim(x< 4+ 5)
X—"C
lim x* + lim x* — lim 1
x—=r = x—c ) .-
= - 3 N Sum and Difference Rules
lim x~ 4+ lim 5
X—C X
et 4+ 7 =1
= 3 Power or Product Rule
cs 4+ 5
(¢) lim Vdx? =3 =\ lim (4x? = 3) Power Rule with rfs = 1,
x——2 r—=—2
= 1\«"‘.{ Iim 4.‘!'2 = lim 3 Diifference Rule
r—+—2 x—=—2
= W 4{—2]2 -3 Product and Multiple Rules
= MNI1l6 — 3
=13 !
THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P{x) = a,x" + dp_;x" ' + --- + ag,then
lim Pix) = Ple) = ape™ + an_1c™ ' + --- + ap.
Xx—=C
THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero
If P{x) and (Nx) are polynomials and (¢} # 0, then
L Plx) Plc)
im = ;
r—=c Q{I} Q{L‘}

EXAMPLE 2 Limit of a Rational Function

. x4+ 4t —3 (m1)P +A=1)yY-=3 o
Iim 5 = 3 =8 1]
x——1 x< + 5 (—1)» + 5
This result is similar to the second limit in Example 1 with ¢ = —1 , now done in one step.
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s Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and
denominator may reduce the fraction to one whose denominator is no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction. (Eliminating Zero
Denominators Algebraically)

+¢ Identifying Common Factors It can be shown that if Q(x) is a polynomial and Q(c) =0, then (x — <) jsa
factor of Q(x). Thus, if the numerator and denominator of a rational function of x are both zero at » =«

they have * = ¢} as a common factor.

EXAMPLE 3  Canceling a Common Factor

Ewvaluate

Solution We cannot substitute x = 1 because 1t makes the denominator zero. We test the
numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x = 1) in common
with the denominator. Canceling the (x — 1)’s gives a simpler fraction with the same val-
ues as the onginal for x # 1:

P4x—2 (=Dx+2) y+2

~ ifx # 1.

=

X —=x xlx — 1)
Using the simpler fraction, we find the limit of these values as x — 1 by substitution:

. x4+ x-=2 .
Im ———— = lim
=] X~ =X x—=1

x+2 14+2
x 1 -

3.
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EXAMPLE 4 Creating and Canceling a Common Factor

Evaluate
m Vxt 4+ 100 — 10

1 >

x==({) x

Solution This is the limit we considered in Example 10 of the preceding section. We
cannot substitute x = 0, and the numerator and denominator have no obvious common
factors. We can create a common factor by multiplying both numerator and denominator
by the expression Vx? + 100 + 10 (obtained by changing the sign after the square root).
The preliminary algebra rationalizes the numerator:

Va2 4+ 100 — 10 _ Vx? 4 100 — 10 Vx? + 100 + 10
x* x? V2 + 100 + 10
x> + 100 — 100
2(Vx2 + 100 + 10)

,{,Z

(V% + 100 + 10)
1 : 3 .
= Cancel x~ forx # 0

— .
Vx4 100 + 10

L ommon Iacior x

Therefore,
. Vx4 100 — 10 . 1
lim > = lim —_——
x—+0 x *=0\/x* + 100 + 10
1 Denorminator
= — ol O at x = 1
Vﬂz + ].[H] + ]ﬂ -..|,_|1-:-I_|||__I.._'
_ 1 _
=5 = 0.05.
++ Solved question
+* Find the limits in Exercises 1-18
1. lim (2x + 5) 2. lim (10 = 3x)
x——T7 x—12
solution
1. lim?(2x+5} =2-T)+5=—-144+5=-9 2. limm(m—jx} =10—-3(12) = 10— 36 = 26
X— — X —
3. lin}:{—xz + 5¢ = 2) 4. 1im2;_r3 — 2x% 4 4x + 8)
solution

3.0 lim (= +5x—2) = ~(2P +5Q2) 2= —4+10-2=4
X —

4. lim (x* —2x* +4x+8) = (-2 —2(-2)* +4-2)+8=-8—-8—-8+8=—16

X— —

4
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5. lim 8(r — 5)(¢t = 7) 6. lim 3s(2s — 1)
1—=h =23
x+ 3
T'J'—r&r+6 B'J'_T«r—?
_ y? ) y+ 2
9., lIim 10, im —
y—==5 3=y =2 y% + 5y + 6
11. lim 3(2x — 1)* 12. 11m4[x + 3)1984
y==—] =*—
13. lim (5 - )3 14. lim (22 - 8)13
1—;— T—
15. lim ——— 16. lim ——2>—
=03 3h + 1 4+ 1 h—=07\/5h + 4 + 2
Vih+1 =1 VESh+4 =72
17. lim ——— — 18, lim —— "~ <
h—0 h h—=10 h
+ Find the limits in Exercises 19-36.
19. lim ——— 20. lim —X*3
—5 y< — 25 x——3 x? + 4x + 3
solution
x-:‘r _ X=3 — 1 1 1 1
19. xl@‘ =25 7 r.]@': (x4 5Kx=3) xlﬂnﬁ x+3 545 10
. x4+3 g x4+3 o 1 1 1
20. xl_l,ln_:g 4443 T xh{“_::_- (x+3x+1) — ]_1}[]’1_:! x+1 =3+1 — I
2 2
. X+ 3x=10 . ox=Tx+ 10
21 lim S 2. lim ==
solution
. “43x=10 _ g (X+35Hx=2) _ - o -,
21 xl—lrln—:'} x+5 _xhrln—:'i x+35 _xl—l}rn—ﬁ{x 2}_ p-2=-1
22, lim M=TEH10 gy G=9=D iy (x—5)=2—5=—3
X — x=2 X — 2 x=2 X — 2 [ ]
—_ 2
23. lim M 24. lim M
—1 F‘—l t—=—1 == =2
— - 5y + 8y
25, lim —=>—4 26. lim —/———
x==2 x* + 2x* y—0 3yt — 16)7
4 —_
27. lim =1 28. lim ‘; 8
u—1 u’ — 1 v—=2 v" — 16
. e 2
29. lim X2 30. lim X=X
—g X = g x—=4 2 —_ \v"r_
3L lim—>—1 32. i Va® +8 -3
x—1 "vf‘{' + 3 =7 x——1 x+1
P _
33 limYx t12—4 34, lim —~ 2
xr—2 x=12 x—=—2 \.}"r_\'z + 5 =3
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_ fwl & I
35, lim 2—YX 3 36. lim — 3 =X
x——3 x+3 —4 5 w,v_-f_,{,l + g

2.5 Infinite Limits

= Ilrnl=DU.

lim f(x)
x—0* flx) -0+t
1
iy ”“‘r'l,“&—?‘ .
If f{x}z—
X

It could be seen from the graph:

1- as x approaches 0 from right then 1/x tends to +oo

2
3

N
[

S50

lim 1 =0
x—+w ¥

o1
Iim — = 40
x—07 X

And

¥ ]

Example

Iim(5 + L) = lhm5+ lirnl =5
b

A—Re X000 K—»00 X

Example

. ;-;:J_
lim

XN—p—aD X

3«x0=«0=0

as x approached 0 from the left then 1/x tends to -oo

Vernical AN TP O

Horzontal
ANy :l'-ltluh_‘

as x approached oo from the right (+o0), then 1/x tends to 0

as x approached o from the right (-o0), then 1/x tends to 0

. l SR of 1 Huorusontal
llm _—= 0 N TR,
x—»—oo ¥ 0

.1 Versical as
‘llm e ezl asyIm i
a—0" X : -

Example

Find lim 5.111( )

N—»00

Solution
Lett= 1/x

So t— 0" as x — oo

So lim Sin(i) =0
X—»o0 X
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Vertical and Horizontal asymptotes

lim + = o0 and lim + = —0o0
x=+0" - r—=()" -
Defintion

A line y = b is a horizontal asymptote of the graph function y= f(x) if either;

lim f(x)=b or lim f(x)=b

X—»

A line x = a is a vertical asymptote of the graph of the function y = f(x) if

either; lim f(x)=2c0 or lim f(x) =00

Example

. Xx+3
lim

x—x x4 2
Solution

. 1+3/x
Ihm-———
e 1+ 2/ x
asymptote)

. x+3 . .
lim = o0 i.e. x =-2 ( vertical

x>—2 x4 2
asymptote)

EXAMPLE 3 Ra

x—»d
Vertical

RNV IRpEOLe &

2 B _

Hest teomtial 3 T
asyImnplode 2l

= i.,e y=1 ( horizontal [ -

tional Functions Can Behave in Various Ways Near Zeros

of Their Denominators
. x=2) ) (x —2)° . ox— 2
@ sy s TG -2 +2 S x+2- "
; x — 2 . x — 2 . 1 1
b 1 = = 1 - = 1 —_— =
® s T a2 MM xrzTa
- x — 3 . x — 3 The values are negative
c lim, =5 = lim = —mo e
() x—=2" x° — 4 x—2* (x — 2Mx + 2) < mEaT S
- x — 3 _ . x — 3 _ . T'he values are positive
(@) _'r]i’n'_?_ x: — 4 - _1-11‘-11;?— (x — 2Mx + 2) = == for x =< 2, x near 2.
(e) rll—,m: :2 __34 = 112-5_. = _"_2;1_3_'_ ) does not exist. See parts (c) and (d).
_ —(x — 2 ] _
@ lim 2= % o i — =D oy, —1l L
x—=2 (x — 2) x—2 (x — 2) x—2 (x — 2)°
In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f),
where cancellation still leaves a zero in the denominator. ]
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EXAMPLE <% Usinmng the Defimition of Infimnmite Limits
Prowe that ‘!lr:_‘ % = O L
Soluticomn Caiwery S = O, wwe wwant o Firmnd & = O such that
o = |l — ] = & immplies ﬁ = =
i e A E T
ﬁ = = if and only iF v = é

or, eguivalemnntly,

- =
==&
Thus, choosing & = lf\,/E (or any smaller positive numibh.er), we sese that
N B 1 1
_ 5 1 —_—— = 5 = T
| =] implies = ==
Therefore., by defimitiorn.,
- 1 .
_-;_—l]n}_' ? = o
EXAMPLE S Looking for Asymptotes (
Find the horizontal and wvertical asymptotes of the curve
e o= X 3
- x + 27
Solution Wie are interested in the behavior as x — o0 and as x — — 2 where the de-

noMmMIinator is Zero.
The asyvmptotes are gquickly revealed if we recast the rational function as a polynomial

with a remainder, by dividing (x + 2) into (x + 3).

1
x+2}x+3

x 4+ 2
1
This result enables us to rewrite w:
1
=1 4+~ ————
> x + 2
We now see that the curve in guestion is the graph of » = 1/x shifted 1 unit up and 2 units
left (Figure 2.43). The asymptotes, instead of being the coordinate axes, are now the lines
v = 1 and x = —2. -
EXAMPLE 7 Curves with Infinitely Many Asymptotes
The curwves
2 = secx — sokw anda 3 = tana — Six

both hawve wvertical asympiotes at odd-integer multiples of 752 | where cos x — O (Figure 2 _ <45 ).

LN LA
NIV T

FIGURE Z. .45 The graphs of sec x and tan x have imfinitely many wvertical

£

asyImptotes { Exarmple 7)o

The graphs of
1 TS

B = CSC w —=— —————— arnd I e el g =
- S1mm - S1rn

hawve wvertical asyvmprtotes at integer multiples of o . where sin x = O (Figure 2.4 ).

> o= cma oo 2 o= cedt o
. U‘ ‘K , ‘ ‘
1 1 1 1 1
— —zr O ol EEC - — — = = = .
=] = = =
FIGIURE 2._.4%46 The sraphs of csc x amnd cot x ({ Examplae 7). -

8
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Solved question

«* Find the limits in Exercises 17-22

17. Iim

as
x-— 4

a x—27

c. x—=2"

Solution

b. x—2"
d. x—-2"

17. @ lim o= lm ooes =
. 1 1 —
(b) ngf%_ o—a xll,r%— D=
. 1 _ . 1 —_—
(c) x—]}lﬂz— X—4 t_lfrE?_ (FEsTressT B
. 1 _ 1 o A
(d) x_]flﬂz_ = hmz_ D=7  °°
18. lim as
=1
A, X —* |_ l.'l. xX— |_
c. x—» —]+ d. .'L'_"_I_
Solution
: X : I SE—
18. (a) xl—lrml_ o=l xll’r[i_ (x4 1Wx=1) — o0
. X — N
(b) x‘_‘{’“l_ x1=1 lm?l— 1x+lmt—l] =
M X = X —
(c) x—]}lﬂl— =1 x_lfrfl_ D=1 - °©
(d) lim lim o= = — 00

X — —1— (D=1 —

b. x—0"

d. x— -1

b. x— =27
d. x—0"

(
(
(
(

positives puume)

positive- negatne

f'_"xf"_“xf'_"‘.f'_"u

positive- negame )

.I‘I.E'l"'a'tl"-'.‘.' nenalwe

positive

positive-positive
positive

positive-negative

nfgati'l.'e

positive-negative

negative-negative

negative )
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21. 1im%as
a. x—0" b. x—2
c. x—2" d. x—2

e. What, 1f anything, can be said about the limit as x — 07

v —3x +2
- as

22. lim- -
x* = 4x
a. x—2" b. x— =27
c. x—=0" d. x—=17

e. What, i1f anything, can be said about the limit as x — 07

«* Find the limits in Exercises 23-26.

) 3
23, lllTl( - !lﬁ)as

a r—0" b. t—0"
. 1
24. llm(ﬁ? - ?) as
a. 1—0" b. i—0"
Solution
: 31 _ : 3] — A
Bty [ ] = o ® tig -] =
. 1 — ; 1 ——
4. @ lim [55+7] =cc (b) lim [ +7] = —c0
. 1 2
5. :
2 llm(xlﬂ - o ”m)aﬂ
a x—0" b. x—0~
c. x—17 d. x— 1"
) 1 1
26. l'm(xu} - (x — |],4f3)35
a x—0" b. x—0~
c. x—17 d. x—1"

10
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2.6 Continuity

CHAPTER Four

Any function whose graph can be sketched over its domain in one continuous motion without
lifting the pencil is an example of a continuous function.

DEFINITION

domain if

Continuous at a Point
Interior poinr: A function y = f(x) is continuous at an interior point ¢ of its

Endpoint: A function v = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint & of its domain if

]_i,m_ fix) = fla) or

lim f(x) = f(c).

lir?_ Sfix) = fib), respectively.
X

A function fix) is continuous at x =c if and only if it meets the following three

conditions:
1- fi(c) exists

2- lim fI({(x) exists

x—c

( c lies in the domain of f)

({ fhas a limit as x approaches c)

ie lim fi(x)=lim f(x)=1lm f(x)

3- lx1_1>13 f(x)=1f(c) ( the limit equals the function value)

FIGURE 2.50 The function is continuous
on [0, 4] exceptat x = 1, x = 2, and
x = 4 (Example 1)

Two=-sided o
continuity Continuity
— from the left

Continuity
from the right

-

¥ = fix)

-
|
|
|

x

| I
| |
| |
| |
c ]

a

FIGURE 2.51
and c.

Continuity at points a, b,

EXAMPLE 1

Find the points at which the function f in Figure 2.50 is continuous and the points at which
f is discontinuous.

Investigating Continuity

Solution The function f is continuous at every point in its domain [0, 4] except at
x = 1.,x = 2, and x = 4. At these points, there are breaks in the graph. Note the relation-
ship between the limit of f and the value of f at each point of the function’s domain.

Points at which f is continuous:

Atx = 0, lirg_ flx)y = flO).
x>
Atx = 3, 1irn3 Flx) = f(3).

ALD < ¢ <4, ¢ = 1,2, lim f(x) = f(c).
X

Points at which f is discontinuous:

Atx = 1, lim f(x) does not exist.
x—=1

Atx = 2, lim f(x) = 1, but 1 * f(2).
x—

Atx = 4, lim_f(x) = I.butl = f(4).
x>

Atc < 0,c > 4, these points are not in the domain of f. ]

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit) (Figure 2.51).
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Exercise 1. Find A which makes the function continuous at x=1.

| 22=2 Hx<1
ﬁ"‘{.&—-ﬂ 1<

We have
Hm f{ﬂ}= lim. 572—2=_1 of !m_{sx;-j: :::i
-1 -0t 0£ 1 15
and

lim f(z)= lm Az —4=A—4
=14 a—1-

So f(x) is continuous at 1 iff

A-4=-]1 orequivalently if A =3.

Examples. atx =3

f(x) = ":_‘39

fails to be continuous at x = 3 since 3 is not in the domain of f.

Examples. atx =3

[ x-9
=] X3 ifx=3
7 ifx=3

L atx=3

The function does satisfy condition 1 since 3 is in the domain of h, h(3) = 7, and does satisfy condition 2 since

If'gifxéa
he =4 %~
7T ifx=3
¥e9_ o (X=3)(x*3)
lm =g =im =3
=imx+3=6
X

does exist. However, since these two numbers are different, condition 3 is violated and h fails to be continuous at
X=3.
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Continuous Functions

THEOREM 9 Properties of Continuous Functions
If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Swms: f+ g

2. Differences: fyF— =

3. Products: f-=

4. Constant multiples: &k - f, for any number &

5. Quorients: ffz provided g(c) = 0

6. Powers: S5 provided it is defined on an open interwval

containing <, where » and s are integers

Most of the results in Theorem 9 are easily proved from the limit rules in Theorem 1,
Section 2.2. For instance, to prove the sum property we have

Lm(f + g)x) = Im(f(x) + g(x))

xX—c

= lim f[.r:l 4+ lim g[x}., Sum Rule, Theorem 1
x—c x—c

= f[f_} + g[f_} Continuity of f, g at ¢

= (f + gMc).

This shows that f + g is continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g ¢ [ is
continuous at c.

gef

Continuous at ¢

g

.,--""'_t'untinuni:l__'u"“---,,w Continuous
ate Sa at fic)
c fie)

s
gl fleh)

EXAMPLE 8 Applying Theorems 9@ and 10

Show that the following functions are continuous everywhere on their respective domains.
243

a) v = VWx2 — 2x — 5 b) v = &
(a) (b) » 1 + x*
x — 2 a0 sin oo
c yo= | = d L= | X S1n X
() » xT — 2 @ » xT + 2




Mathematics Materials Lecturer A.M.Alazzawe FIRST CLASS

SEMESTER ONE

Solution

(a) The square root function is continuous on [0, oo ) because it is a rational power of the
continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then
the composite of the polynomial fi{x) = x2 — 2x — 5 with the square root function

(b)

(<)

Cda)y

2 = V.

The numerator is a rational power of the identity function: the denominator is an
everywhere-positive polvnomial. Therefore, the gquotient is continuous.

The guotient (x — 2),.-*(;:2 — 2 is continuous for all x = :I:\-’E_.. and the function is
the composition of this quotient with the continuous absolute value function (Exarmm-
ple 7.

Because the sine function is everyvwhere-continunous (Exercise 62), the numerator
term x sin x is the product of continuous functions, and the denominator term x< + 2
is an everywhere-positive polynomial. The given function is the composite of a gquo-
tient of continumous functions with the continuous absolute wvalue function (Figure
Z2.58). -

-

—Zar —a o | ar 2o

FIGURE 2.58 The graph suggests that
= Jix sinx)(x= 4+ 2| is continuouwus
(Example Sd).

Continuous Extension to a Point

The function v = (sin x)/x is continuous at every point except x = 0

y‘ = (sinx)/x is different from v = l‘fx

SLfaoe e o= O
= —
D 1. x = O
The function Fx) is continuous at x — O because
. sim
lirm SR o)
W W

3
3

(0, 1) (0, 13

g

g

]
o
1l

|
FE|

=]
Ll

(a) by

FIGURE 2.59 The graph (a) of fix) = (sinx)/x for —&/2 = x = /2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the
discontinuity from the graph by defining the new function Fx) with F(0) = 1 and

Fix) = fi(x) everyvwhere else. Mote that F{0) = Ill_lf:fh JFilx).
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EXAMPLE 9 A Continuous Extension
Show that
2 4+ o — 6
(x) = lq—
s x= — 4
has a continuous extension to x = 2, and find that extension.
Solution Adthough f(2) is not defined, if x = 2 we have
fl:r]=x2 + x — 6 _ (x — 2Mx + 3) — x + 3
a 2 — 4 (x — 2Mx + 2) x + 27
The new function
x + 3
Filx) = T3>
is equal to fix) for x == 2, but is continuous at x = 2 having there the wvalue of 5/4. Thus
F is the continuous extension of f to x = 2, and
. 2 4+ x — 6 . 5
limm =—— = — P — lim 2 = =
x—=2 IE — 4 x—2 f{r} <3

The graph of f is shown in Figure 2.60. The continuous extension & has the same graph
except with no hole at (2, 5,/4). Effectively. & is the function f with its point of discontinu-
ity at x = 2 remowved. -

(=]

FIGURE Z2_.60 (a)y The graph of
Fix) and (b)) the oraph of its
COnNtiIiMmuuouns extensior ()
({Example S9)_

Solved question

In Exercises 1-2, say whether the function graphed is continuous on [-1,3] If not, where does it fail
to be continuous and why?
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Solution
1. No. discontinuous at x = 2, not defined at x = 2

2. No, discontinuous at x = 3,1 = Iim{_ gx) £ g3)=15

At what points are the functions in Exercises 13-28 continuous?

13._q-=fl - 3x 14. v = I — 4+ 4
x—2 (x + 2)
Solution
13. Discontinuous only whenx —2 =0 = x=2 14. Discontinuous only when (x +2)* =0 = x = -2
17. y = |x — 1| + sinx 18. v = 1 - ﬁ
' T x]+1 2
Solution

17. Continuous everywhere. ( |x — 1| + sin x defined for all x; limits exist and are equal to function values.)

18. Continuous everywhere. (|x|+ 1 # 0 for all x; limits exist and are equal to function values.)

Find the limits in Exercises, and Are the functions continuous at the point being approached.

29, lim sin({x — sinx)
X—w

30. lim sin(ﬂcos (tan :])
t—= 2
Solution

29, xli_l"ﬂp sin (X — sin x) = sin (7 — sin @) = sin (7 — 0) = sin 7 = 0, and function continuous at x = .

30. llimn sin (% cos (tan ﬂ] = sin (% cos (tan {[}]}) = sin {% cns{ﬂ'}] = sin (%] = 1, and function continuous at t = (.
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35. Define g(3) in a way that extends g(x) = (x* — 9)/(x — 3) to
be continuous at x = 3.

Solution

35. gx) = 2= = 0HI0=I —x 13 x#£3 = g(3) = lim (x+3)=6

36. Define h(2) in a way that extends hir) = (1 + 3t = 10)/(r = 2)
to be continuous at 1 = 2.

Solution

36. h() = SEAF0 = CHED = (+5,0#£2 5 hQ) = lim ((+5) =7

=2

39, For what value of a 1s

2
fx) = {.\ I, »=3

2ax, x=3

continuous at every x?
Solution

39. As defined, lim{ _fix) = [3J? — 1 ==8and lim{ (2a)(3) = 6a. For f(x) to be continuous we must have
X — x— 3

ba=8 = a=%.
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CHAPTER Five

3.1 Derivative

Definition: The function f defined by the formula

f(x+ Ax)— f(x)

£~ (x) = lim

Ax=(

Is called the derivative with respect to x of the function f. The domain of f consists of all x for
which the limit exists.

DEFINITIOM Derivative Function
The derivative of the function fi{x) with respect to the wvariable x 15 the function
F " whose value at x is

. - X e + ) — Flx)
£1G) = i z :

provided the limit exists.

Calculating Derivatives from the Definition

Frd
s

Jix )

EXAMPLE 1 Applying the Definition

x
o — 1 -

Dnifferentiate flx) =

x
o — 1

Solutiomn Here we hawve filx) =

+ & - (v —+ F)
Fix )= e+ ) — 150

. - Filx + f) — flxd
S = fim, Z

o i J o o
x 4+ fr— 1 x —

#r
X 1 (e =+ A2ix — 1) — x{x -+ & — 1)
lirvm —— =
fa—=1 F1 (<= & — 1Mx — 1)
lim - - — 5
] (e =+ 2 — 1 Jx — 1)
— 1 —1

= 1i = .
A S0 + B — 1d(x — 1) (x — 112 -
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Solved questions

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exercises 1-6. Then find the
values of the derivatives as specified.

L f(x) =4 —x7 f(=3),f(0), (1)
Solution

1. Step1: f(x) =4 —x”andf(x +h) =4 — (x + h)?
Step 2: fix+h)=fx) _ B=(x+h)]=(4=x") _ (@=x"=2ah=h)=4+x" _ —2xh=h _ h(=2x=h)

h h h h - h
= —-2x—h

Step 3: f'(x) = hlim{} (=2x —h)=-2x: f'(=3) =6.f(0)=0.1'(1) = -2

2. Fix) =(x—=1F +1; F(=1),F(0),F(2)

Solution

2. F)=(x—-D*+1andFx+h) = x+h=1?+1 = F(x) = lim (b=l + 1 (=174 1]

. 1 L, . —-(x? -7 . 2 .
= lim (x° + 2xh +h" = 2x _IH;I]+L]| (X =2x+1+1) = lim w — lim {EK-I-]'I—E}
h—1 h—0D ! h—10

=2x— 1) F(—-1)= -4, F0)=-2,F(2)=2

3. g() = =5 g(=1),2(2),¢(V3)

2
Solution
3. Step 1: g(t) = & and gt + h) = =l
n - _ (58) * — (4 2th + 1) '
. (L4h) =g __ =z 2 e h o — U= +2th+h") __ —2th—h"
SICP 2: £ h = ! th - h - it <+ h)* -2 -h - 1l+[t,I]2 Zh
— h{—=2t—h) __ —2t—h
— (t4+hyFrh — (t+4 hF -
Step 3: /(1) = hlii,n{} ﬁ — % = T_E sg(—1)y=2,g(2) = — _L1, e (ﬁ) - — 3;.3
a1 == ; . . S
4. k(z) = ——= K(=1). k' (1), & (V2)

5. p(6) = V36; p'(1),p'(3),p'(2/3)
6. ris) = V2s + 1: »~(0) (1), (1/2)
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In Exercises 7-12, find the indicated derivatives

dy 5 dr 5>

—_ — -3 » = = 4
7. . if vy = 2x 8. s if » 3 1
Solution
¥ 3 K Tt 2 2 3 3
7. y=f(x) =23 and f(x + h) = 2(x + h)® = & = |jm 203W =20 _ jjp 20CH Ik I ph) -
y = 1t(x) (x +h) =2(x+h) ax = . b pim 5
= lim OBt6ur 4T _ piyy BOCHORAM) _ hiy (6x2 + 6xh + 2h?) = 6x7
h—0 ! h— 0 h— D
(s +h)3 ot
i —+I1|=|F+1 3 3
_ ¢ dr _ 1 [ 2 } [—’ ] 1 1 [(s+hy +2]—[s"+2]
8. r—2+1:‘;*ds—h1£n” h _thgnn h
1. & 1 3s? shlth®t2—g— 1 1 h[3s® + 3sh 4+ h’ . :
_ %hh_;n £+ 3%+ 3 +H 4212 _ %hh_»n % — %hlinu (3s? + 3sh + h?) = 3 §2

ds . ot
% T ST
dv _ . _1
10. i if v=1¢ 7
ip
11. % if p=—; 1
aq Vg + 1
2. £ =L
dw V3w =2

3.2 Differentiation Rules

Laws of derivatives:

the dernmvative of a constant 1s zero.

(X.u)" — IIX”_I

(eF(x)) = ef (%)

(F(072(x) = (0 + g(x)

(£(0.2()) = £(x.2(0) + (%) 2(x)

[ £ T = n( £ £

[M] _ 20 (0 — (0
£(x) 2(x)”

S e
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EXAMPLE 1
If f has the constant value fix) = 8, then
dar o .
ax a8 =0
Similarly,
o Ty o S
o _2) =N and ox (v3) =k -
Proof of Rule 1 We apply the definition of derivative to f{x) = ¢, the function whose
outputs have the constant value ¢ { Figure 3_8). At every value of x, we find that
x + h) — flx) — o
Fix) = tim £ ' = lim “—% = 1lim0 = 0. ™
i i h—0 h—0
EXAMPLE 3
(a) The derivative formula
Py g w6
dx
says that if we rescale the graph of v = x? by multiplying each v-coordinate by 3,

then we multiply the slope at each point by 3 (Figure 3 .9).

(b) A useful special case
The derivative of the negative of a differentiable function u is the negative of the func-

tion”s derivative. Rule 3 with ¢ = —1 gives
o o o e
dxl'r ) .u!'rf_] u) = —1 .:.E'r“” =T =
Proof of Rule 3
o y ctllx + h) — culx)
——ct = lim
o el i
) ulx + dr) — wix)
= ¢ lim L it propert y
| I
_ e o
e —— u is differentable. |
P

EXAMPLE 4 Derivative of a Sum
y=x*+ 12

dy

_d . d
de — dx (%) + dx (12x)

= 4x* + 12 I

Proof of Rule & We apply the definition of derivative to fix) = w(x) + vix):

o [ulx 4+ A 4 wix 4+ A)] — [uix) 4+ wix))]
Iim

2 fux) + vix))

h—=0 L]
. wlx + f) — wlx) vix + ) — ul[x]l]
= hm +
h—=0 f ]
_ wix + h) — wix) T vix + h) —wix) _ du  dv
~ b h A h T ode | dx’
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EXAMPLE 7 Using the Product Rule
Find the derivative of

vV
1 1 A
Yy =¥ (.Tz =+ F)'
Solution We apply the Product Rule with w = 1/xand v = x* + 1)

o au '
d |1 1 1 1 1 1 —(ww) = w— + v—, and
o |:? (.‘{'2 -+ ?):| =~ (2.1:’ — __1{'2) -+ (_\:'2 - F) (— __YZ) i 1) :4'; '
'l 'I ax

= 2 — _1’_3 — 1 — _!(_3' Example 3, .l‘\-..':.'lli'll 2.7,
2
] ] _ = [ ]
x?
Proof of Rule &
o Cowlx 4+ Melx + h) — wixiu(x)
T(uv} = lim
fx h—ei) I

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of & and v, we subtract and add w(x -+ #)vix) in the numerator:

o . wlx + hwlx + k) — wix + Bolx) + wlx + Boeix) — wix)o(x)
——(uw) = lim
= lim [ul[x + i) wix + f) — wix) + ul(x) wix + k) — ul{x}l}
h—0 h 7
vle + k) — vix) uix + h) — ufx)

= i+ ) - fimy = v lim T

As happroaches zero, uix + #) approaches u(x)because 1, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dv/dy at x and du/dx at x. In short,
o

E(uv} = u

du | du

dx e’ -

EXAMPLE 10  Using the Quotient Rule
Find the derivative of
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Solution
We apply the Quotient Rule withu = * — landv = * + 1:
dy (P + 1)+2t = (17 = 1)+ 21 P

m_ [:FJ' + ”2 TR,

vl dufdt) = wlavfd)

_ 20+ 20— 20 + 2t
(12 + 1)°
4¢

(t* + 1)

Proof of Rule 6
ulx + h) ulx)

d fu) _ lim vix + 4 wvlx)
de \V) a5 h

vixhulx + h) — wlx)vix + h)
ﬁzI—TJ hulx 4+ hwvlx)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of « and v, we subtract and add v{x)u(x) in the numerator. We then get

d ful _ i vixhulx + A — vixdu(x) + vixwix) — wlxiwix + k)
de \v |~ M hvix + hv(x)

wlx + h) — wulx) vix + h) — vix)

_ vix) P — ulx) P
- ﬁ!ﬂl'] vix + hjwix)
EXAMPLE 11
{1 . . I
@) J;(;) = gU =t =g
dfdy_ 4o o 12
(b) o (X]j = 4{“ () =4(-3p"" = K
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Proof of Rule 7 The proof uses the Quotient Rule. If » is a negative integer, then
n = —m,where m is a positive integer. Hence, x" = x™™ = 1/x", and

don_df1
dc ) T (.'c”‘

.'f’"-i'l) - I-%[:x”‘j]

SR AN, Rule withu = 1 and v = x*
— uctient BKule with w = and v = 2™
-I d
LYJNJ_
0 — my™! d

= T Since m 0 —I | =n

= —py !

= "L Since =m = n ]

Second and Higher Order Derivative

y = % (first order)
T = jx(j’i = ff;f (second order)
¥y = jx( ffif) = j;}y (third order)
= %(}")n_l (nth order)

EXAMPLE 14  Finding Higher Derivatives

The first four derivatives of y = x* — 3x* + 2 are

First derivative: o= 3t — A
Second derivative: y" = 6x — 6
Third derivative: " =6
Fourth derivative: ™ = 0.
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Application

Velocity is the derivative of the distance. Speed is the absolute value of velocity.

Speed = |velocityl
Speed = Iv(t)l = Ids/dtl

Acceleration is the derivative of velocity with respect to time.

dv d’s

Ay =—= -

{) dt dt°
Example

The distance of a ball falls freely from rest is proportional with time as s=4 .9t
a- How long did it take the ball bearing to fall the first 14.7m?
b- What is the velocity, speed and acceleration after 2 second?
Solution
a- s =4.9t
14.7=4.9t = so t==+V3 second
t= V3 ( time increase from t=0 so we ignore the negative root)

b- velocity at any time
ds
t)y=—=9.28¢
wW1) p
Velocity after 2 second =v(2) = 19.6 m/s
Speed =119.61 = 19.6 m/s

Acceleration at any time

S —9.8m/ s>

=

d
dt”

a(e) =

Acceleration after 2 second = 9.8 m/s’
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Example

A dynamite blast blows heavy rock straight up with a lunch velocity of 160 ft/sec.
It reaches a height of s=160t -16t> after time (sec)

a- How height does the rock ago?

b- what are thw velocity and speed of the rock when its 256 ft above the ground on
the way up ? on the way down?

c- what is the acceleration of the rock at any time t during its flight (after the
blast)?

d- when does the rock hit the ground again?

Solution

a- v=?=160—32t ft/'sec
r

at v=0 t=5 sec
Smax = S(5) = 400ft
b- s(t)=160— 16 t°
ats = 256 ft then the time will be 2

Henght

and 8 second

v(2) = 160 — 32 (2) = 96 ft/s — e A
v(8) = 160 - 32 (8) = - 96 ft /s

At both instants, the rocks speed is 96 ft/s

c— a = % = —32 I/ sec” ( the acceleration is alwawyvs downword)

d- at s=0 then time will be 10 sec
Solved questions
In Exercises 1-12, find the first and second derivatives.
1. y=—x" + 3 2. y=x"+x+8
Solution
1. y=-—x>+3 = ¥ _d (x4 d3)— 2x+0= 2z = S¥=_2

dy
dx

=1

=2x+14+0=2x+1 = i?f:z

2

2. yv=x>+x+8 =

=1
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3.5 =5t =3r 4. w=3z" =72 + 21z*
S S T S S
5._1—3 X b. y 3+2+4
7. w=3:_2—_% 8 *:=—2r_L+i1

9. v = fix? — 10x — 5x72 10. y=4 — 2x — x—°

1 5 12 4 1
- = T — - T e— S — —
11. r 32 2s 12. ¢ ;3 + 5

In Exercises 13-16, find (a) by applying the Product Rule and (b) by multiplying the factors to
produce a sum of simpler terms to differentiate

13. y =3 =x)x =x+1) 4 y=(x=1)x"+x+1)

Solution
13. @) y=3-x)(x*—x+1) = y=3—-x)- 2 (F—x+1)+(x*—x+1)- L (3-x%
= (3 - )(3){ —1) +(x3 —x+1)(=2x) = =5x +12x* — 2x — 3
(b) y=—x"+4x3 —x> -3x+3 = y=-5x +12x* - 2x - 3

4. @) y=x—-Dx*+x+1) = y=x—-D2x+ D)+ (x> +x+1)(1) = 3x*
b y=x-DE*+x+1)=x -1 = y =3x*

15. y = (x* + 1_!(_1' + 5+ %) 16. v = (_r + %)(1 - % + 1)

Find the derivatives of the functions in Exercises 17-28.

2x + 5 2x + 1
17. v =3 18. = =
- 3x—2 =1
Solution
. ' — !
17. y = 213 ; use the quotient rule: u=2x+Sandv=3x—2 = v =2andVv =3 = y = ¥
_ Gx=DQ)-(2x+5)3) _ bx—4-—6x—15 _ _—19
(3x=2)* (3x —2)° T (3x=2)
_ 2x+1 dz __ (- 12— 2x+ D(2x) _ 2x2—2—4x* —2x _ —2x"—2x—2 _ -2(F*+x+1)
18 Z = X —1 :\r" dx — [xj_l}j - [Xj—l}j - (Xj—l}j - (xj_l)ﬂ

10
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25 v =

27. y =

21 v=(1 = 0)(1 + ¢2)°!

23. f(s) =

1 + x — 4vx

Find the first and second derivatives of the functions in Exercises

31-38.

(XX =12 +x+ 1)

4

=1
P+ t=-2
22. w=(2x = 7)) Nx + 5)

20. f(r) =

94, 4 = Sx +_1
2vx
2%. r = 2(%_ + vﬁ)
Ve
x4+ 1lix + 2
28, y = (x )x )

(x = 1)x=2)

Solution

3y="T=x24+7x"! =

2. s="0 43 Lo g5l 2 5 E o052 4200

d’s _ -3 —4

(@ — 106" +86+1)

33 r=

34. u =

35 w= (

t* + 5t —1

32, 5= 2

dx

10 G
[ !

A

(x* + x)x* = x+ 1)

X 4

)[3 - z) 6. w=(z+ Dz=1D(z2+ 1)

3.5 The Chain Rule and Parametric Equations

dy _ox — 7x2 =2x—%:>

2+ 14x3 =2+ 4

S+ =2+ 2

The Chain Rule is one of the most important and widely used rules of differentiation. This section describes the

rule and how to use it.

If v =1f(t) and x = g(t), then

dy _dy,dx

dax
And

-

d”y _ dy” ;dx

=

dax~

dy _dy dt

or .
dx dt dx

d*y dy dt

or —
dx~ dx dx

11
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EXAMPLE 1 Relating Derivatives
The function y = %x = %[3.}(} is the composite of the functions » = %H and & = 3x.

How are the derivatives of these functions related?

Solution We hawve

day 3 day 1 e
ae ~ 2 dw 27 and dve 3
51 2 L ] d that
._II'ICCZ—Z s WE SCC o
dy dv g
dx  du dx

Find dy /dx* if x=t-t* and y=t—t
Solution

__dy_dy/dt _1-3t
Y dx dx/dt 1-2t

dy~ 2-6t+6t
dt (1-20)°

dy dy /dt 2—-6t+6t°

dx dx/dt (1-2¢)°

“Qutside-Inside” Rule
It sometimes helps to think about the Chain Rule this way: If y = f(g(x)), then

Y = )) e g'(x)
7o = 1 glx)) - glx).

12
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EXAMPLE 4 Differentiating from the Outside In

Differentiate sin (x® + x) with respect to x.
Solution

%':‘-inlf.:c2 + x) = cos(x® + x)-(2x + 1)

—_— . -
ins wde mside derrvatmve of
left alone the mside

The Chain Rule with Powers of a Function

d |, a—1 i
—iu = . —lu") =m
dx dx it

EXAMPLE 6 Applying the Power Chain Rule

(a) %{5.:3 — x4 = (523 — xﬂﬁi{iﬁ — x*) Power Chain Rule with

—_ T

5 4
ke X - X . n

= 7(5x° — xH%5-3x7 — 4°)
= 7(5x° — xH)%15x7 — 47

i 1 d _
(b) _(3_'-: - 2) = &t — 27

dx
= —1{3x — Zj_zi[?ﬁﬂ' — 2) IJIH_h-I. l'll I_“_i I-:llih i‘illl'.
= —1(3x — 2)7%(3)
_ 3
(3x — 2)°

Solved questions

In Exercises 1-8, given y = f(u) and u = glx), find dy/dx =
f'lglx))g’(x).
I| Ly=6u=9 u=(1/20* 2. y=2u, u=8—1 |

Solution

13
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L fwy=6u—9 = f'(n)=6 = f'(gx) =6:g(x) = 1x* = g'(x) = 2x%; therefore g—': = f'(g(x))g'(x)
=6-2x° = 12x3

2. fu)=2u® = f'(u) =6u’ = f'(g(x)) = 6(8x — 1)*; g(x) = 8x — | = ¢'(x) = 8: therefore g—i = f'(g(x))g’ (x)
=6(8x — 1)? - 8 = 48(8x — 1)?

3. yv=sinu, u=3x+1 4. y =cosu, u= —=x/3
Solutions

3. f(u)=sinu = f'(u) =cosu = f'(g(x)) =cos(3x+ 1); g(x) =3x + 1 = g'(x) = 3; therefore g—i = f'(g(x))g'(x)
=(cos(3x+1)3)=3cos(3x+1)

4. f(u) =cosu = f'(u) = —sinu = f'(g(x)) = —sin (‘T") gx)=F = gx)=— %; therefore % = f'(g(x))g'(x)

~ —sin (39 () = dsn ()

5. y=cosu, u=sinx 6. y =sinu, u=Xx—COSX

-
—sec i, U =x"+ Tx

7. yv=tanu, u=10x=-=5 8 y

In Exercises 9-18, write the function in the form y = f(u) and
u = g(x). Then find dy/dx as a function of x.

Mo y=x+1) 10. y = (4 = 3)° |

Solution

9. Withu=(@2x+1),y=u" £ =2 & —5u!-2=102x + 1)*

10. Withu = (4 —3x),y =u’ & =& du _gy8.(-3) = —27(4 — 3x)®

dx du dx
. —7 . 1]
11 1—(1—§) 12. _1-=(§—1)
Solution
. x -7 dy dy du —8 1 xy—8
11. Withu=(1—-32). y=u": EF=FET=—"Tu®-(—3)=(1—3)
12. Withu= (2 — 1),y =o10: & _drds __4g,-11_ (1) = 5(x_1)""

14
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vt 1y X 1Y
13. v = (? + x — ?) 4. v = (E + E)
cut(rr - %)

17. y =sin'x 18. v = S5cos'x

15. y = sec(tanx) 16. v

Find the derivatives of the functions in Exercises 19-38.

19. p=V3i-—1t 20. g = V2r —r?
21. 5 = ..4 sin 31 + icnsjr
3w 57
Solution
1/2 d 1 —-1/2 d 1 —1/2 -1
9. p=V3-t=GB-9/ = F=383-0""-5C3-0=—33-0""=
. {3 3t

22. 5 = sin (T) + cos (T)
23. r = (cscH + cotf)”! 24. r = —(secH + tan )’
25. y=xsin*x + xcos7x 26, y = :::_.Si.n_i.'{' - %cm‘ﬁx

R PP _ 1y
27. _1—21{31 2) + (4 2::'1)

B oy=(-202+L(241)
._‘L—[j—‘t} ET 1

29 y=(dx +3)%x+1)7  30. y = (2xr = 5)7"(x* = 5x)°

31. hlx) = xtan (2“\;’?) + 7 32, k(x) = x* scc(l)

X
_ sinff\° {1+ cost\"
33 110) = (m) M- 20 = (T)
35. r = sin(#?) cos(28) 36. r = Sec‘v’!gtan (%)
. t sin ¢
37. g = sin ( ) 38. g = Cﬂt(_)
Vit ,
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In Exercises 39—48, find dv/dl.
39. v =sin® (7t — 2) 40. y = sec’ mt
41. v= (1 + cos 2¢)™* 42. v = (1 + v::{:t{r‘,"'..'fjll'_2
Solution

39. y:sinQ(m—E) = %:ZSin{m—Z)-%sin(m—E):ZSin(wt—2)+ces(m—2)—%{:rrt—Z}

= 2w sin (7wt — 2) cos (7t — 2)

43. y = sin(cos(2t — 5)) 44. y = cos (5 sin (%))
’ 1

45. v = (] + tan® (é)) 46. v = E(l + casz{?!) }3'

47. y = V1 + cos (1) 48. y = 4sin (V1 + Vi)

Find »" in Exercises 49-52.

J 9. y= (] + %)1 50. y = (1= Vi)™

51. y = %cct[h‘ - 1) 52. v = 9tan (%)
Solution
9.y (141 5y =30+ 5 =-2(+Y >y = (3 -A0+D - (+H£3)
=EHREUHHEIMH @)+ =50+ + 50+ =5+ (t+1+1)
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59. Suppose that functions f and g and their denivatives with respect
to x have the following values at x = 2 and x = 3.

x f(x) £(x) ') £'(x)

2 8 2 1/3 -
3 3 —4

L lad

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2f(x), x=2 b. fix) + g(x), x=3

c. flx)+glx), x=3 d. fix)/g(x), x=2

e. flglx)), x=2 f. V'rm x=2

g. 1/g(x), x=3 h. V2(x) + gXx), x=2
Solution

59. (@) y=2f(x) = L =2f"(x) = £| =2'Q)=2(L) =32

==

(b) y=fx)+gx) = F=®0+gx = & =103 +gB) =21+5

Implicite Function Differentiation

We can find the derivative of implicit functions in two steps:

Step 1: Differentiate both sides of the equation with respect to X, treating y as a
differentiable function of x

Step 2: Solve for dy/dx

Example
Find dy/dx for yz +5xy — 6x° =0
Solution

dy dy
2y—+5x—+5y—-12x=0
ydx dx 4

dy 12x-35y
dx 2y+5x

17
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Example

Acssume that the radius r and the height of a cone are differentiable functions of t
and let VvV be the volume of the cone. Find an equation that relates dWV/dt, dr/dt and
dh/dt.

Solution

v—"1r2h

dav T > dh dr
=—(r" — +2r—— h
ot 3 dt dt
dv 7T - dh dr
= —(r" —+2rh—)
ot 3 ot ot
EXAMPLE &5 Tanmngent amnd NMormal to the Folium of Descartes
Show that the peoint (2, <) lies on the curwve x> 4 > — Gy =— O . Then find the tangent and

morrmal tor the curve thers (Figure 3.3 1 ).

So Lution The proint (2. <43 bes on the courve bocause its Ccoordinates satisiw the ocguation
iven for the curve: 25 4 4% — QE23(4) = 8| —+ &I T2 = .

Ty Firmd the slopae of the curve at (2, <G4, we first use implicit differentiation o Fird =
Forrmaala For ool -

e F - e — Qe =— O
i = = = i = ==
e , — . —
il -~ ;l P '::'1 ;'l il ((;‘:{'1 :'l P (DJ
B Z 3»1-2£ — o = g — O i
P e P
L=
(3% — D) S — + Ix® — D = O
Y 3 = o B =
[ | —— i =
v 3 — e )
e aE — B e e <
WA then evaluate the derivative at (oo, ) = (2, =) :
iy B — s 3y — 2= 0w oA
Rl I =TS T — B |zl an A= — 3= 1 El

Theae tangent at (2. <943 is the line througsh (2, <94 with slopae <075

=1
= a4 + Z(x — =]
=3 1=
2= g = -
Ihe mormmeal tor the curwve at (2, 943 is the line prerpendicular to the tangent there, thhe lime
throwugsh (2, “4) with slopre — S 0=
=
Y — 4 — = (o — 20
= 13
= — g = = -
T e guiaddratic firrarewa la cnables s (el s v = sccornd —dem e STaREE=R S Tat sl likoe
T — Papyr - BoaT — (O o s dm terrms Of o, Therse is a formmu la for the threse roots of a culbidc
couation thhat is like the guadrmtic formmuala boat aoouach more comprlicated. T this formmmala is
w secd tor solwe thhe eqguaticrmm e _1.-3 = S For 3 imnn terms of v, then three functions deter—
mined by thhe cguaticon anrae
3." x> S = 3." B I-' =3
J— J— y = )= =4 y = )= =4
A = Jax) = 1\." = —+— = 2T —— “\.." = ~ = = T
and
II | II
| 3 | 6 | 3 6
I i x lx

= — | —F I__ | = [ I .".-II_.T_ _ II|I
} flx) £ V-3 \ + 27x* ~ ]

X g3
: 3 2 " \4 27x7 | |.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.

18
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EXAMPLE 5 Finding a Second Derivative Implicitly
Find d’y/dx® if 2x* — 3p? = 8.

Solution To start, we differentiate both sides of the equation with respect to x 1in order to

find y" = dyfdx.
3 2y o
ce’t (2 3 :I clx (8)
ﬁrxz — f)-"l.'_l" =0 Treat v as a function of x.
xF — " =0
2
»o= XT. when » = 0 Solve for '

We now apply the Quotient Rule to find »"

— 2
o _ 2x ad t 1 _ 2x X~ A
- = : ¥
(.{r } v

Finally, we substitute »' = x%/y to express 3"

( ) —_ r_j‘ when y ¥+ 0 | |

in terms of x and .

¥ o

|H
G| 1

Solved question

Find dy/dx in Exercises 1-10.

| | 1. y=x" 2. y=x—F
Solution
_ 9/4 dy _ 9 _5/4 _ «—3/5 dy 3 _-8/5
L y=x"" =5 3 =71X 2. y=x = 5 = — 35X
3.y =V 4. y = V5x
5. y=TVx+6 6. y==2Vx =1
7.y =(2x + 57 8 v=1(1—-6x)"
9. y = x(x? + 1)'2 10. vy = x(x* + 1)

Find the first derivatives of the functions in Exercises 11-18.

) 1. s = V2 12. r = Vo~
Solution
L s=vVe=0/ = &_ 251 12. r=v/63 =931 5 & __3p7/
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13. y =sin[(2f + 5)_2"“] 14. z=cos[(1 — 6:}2""3]
15. f(x) = V1 = Vx 16. glx) = 2(2x7'2 + 1)713

17. h(6) = V1 + cos(20) 18. kK(#) = (sin(6 + 5))°*

Use implicit differentiation to find dyv/dx in Exercises 19-32.
I [19. % + 7 =6 20. 3 + 33 = 18y

Solution

19. x%y +xy* = 6:
Step 1: (zdy—ky 2x) (x 2y & +y?- ) 0
Step2: x> L+ 2xy E = —2xy —y?
Step 3: E ( + 2xy) = —2xy — y?

. dy _ =2xy-y
Stﬁp 4: dx = x24+2xy

20. X*+y3 =18xy = 3 +3y2 L =18y + 18x & = (3y2 —18x) L = 18y —3x2 = & = H=x

dx dx ¥y —6x
21 oy + v =x +y 2. x -4y =1
23, xH(x —y)P=x—y* 24. (3xy + 7)* = 6y
|2=x_1 _1:-1'__1'
25. — 26. x Yy
27. x =tany 28. xy = cot(xy)
29, x + tan(xy) = 0 30. x + siny = xy
31. ysin (ll) =1—-xy 32. y’cos (.Il) =2y + 2y
Find dr/d# in Exercises 33-36.
33. 02 4 F2 = | M. r—2Vg=2 S0P + 33"”'
solution
1/2 4 (/2 Lg-1/2 4 1,-1/2  dr _ dae [ ] = =0 a2V W
33. 07 +r _1:}29 +2r da_oz’\'dﬁ[zﬁ]_gﬂ:}da_ 28 NG
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34. 1._2\/7:%92[3+%93;’4 s %_H—UQZH—]]S_'_Q—]H = % :Q—l,f2+9—lf3_|_6|—1;'4

In Exercises 37-42, use implicit differentiation to find dy/dx and then
d’y/dx*.
|3T. X +y =1 38. x4+ p¥ =1

Solution

37. X2 +y2 =1 = 2x+2yy =0 = 2yy = —2x = g_i:y!:_§ now to fin ddy fx(y"):d%(—ﬁ)

0 y(=Dxy _ TYHX (_i) . F_x dy oo —y=xr =y (1—yY) 1

= y = )"2 = }ri since y = — y = - = y = )"3 = )"3 = —y:;
2/3 2/3 2_-1/3 , 2 .-1/3 dy dy 12 ..-1/3 x—1/3 ¢ dy x~1A AREE
38.)("4—}';—]:}3)( ’F+§}!’ / =0 = [ "{] / iy—a——m——(z) :

13,0 l Ly -2/
Differentiating again, y” = =5y {L’JH’ Gx77) =

dly _ 1 .-2/3,-1/3 | 1 1/3,-4/3 _ ¥y 1
= o — 3X y + 3y X - 3x'1.-"-5 + 3yl

39. v =x" 4+ 2x 40, yP=2x=1-2p

41. 2Vy=x—y 2. xy +y* =1

43. If x* + y° = 16, find the value of d E_Vg’ dx? at the point (2, 2).
44. If xy + y* = 1, find the value of d”y/dx” at the point (0, =1).

In Exercises 45 and 46, find the slope of the curve at the given points.
45. v* + x> =y*—2x at (=2, 1)and(-2,-1)
46. (x> + v =(x—y)/ at (1,0)and (1, -1)

Solution

45. Y 4+ x? =y' —2xat (-2, Dand (-2, 1) = 2y P+ 2x =4y’ L -2 = 2y P -4y’ ¥ = 2 - 2x

dy CAu3Y o~ dy _ x+1 dy o dy _
ax (2}’ 4}{ ) = 2 2x = dx — Zyi—y = dx —2.1) - 1 and dx|{_1_” =1
46. (x2 +y?)’ = (x —y)?at(1,0) and (1, —1) = 2(x2 + y?) (2x—|— 2y g-;-) =2(x —y) (1 —dr
= ERYCHY)Hx -] = -2 (C ) -y = F = PEIRIEEY - ¥ =1
and % =1

(1,—1)
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4.3 Increasing Functions and Decreasing Functions.

In sketching the graph of a differentiable function it is useful to know where it increases (rises from left to right)
and where it decreases (falls from left to right) over an interval.

DEFINITIONS Increasing, Decreasing Function
Let f be a function defined on an interval f and let xy and x be any two points in Jf.

1. IF flxy) =< filxz) whenever xy << xz, then § is said to be increasing on .
2 IF flaxz) == flxg) whenever xy << a2, then f is said to be decreasing on J.

A function that is increasing or decreasing on § is called monotonic on 7.

COROLLARY 3 First Derivative Test for Monotomnic Functions
Suppose that f is continuous on [, #] and differentiable on (a, &)
If f'(x) = 0 at each point x = (a, /), then fis increasing on [a, &].

If f"(x) =< 0 ateach point x = (a, &), then f is decreasing on [a, &].

EXAMPLE 1 Using the First Derivative Test for Monotonic Functions
Find the critical points of fix) = x* — 12x — 5 and identify the intervals on which f is
increasing and decreasing.
Solution The function f i1s everywhere continuous and differentiable. The first derivative
Fix) = 3x — 12 = 3(x? — 4)
= 3({x + 2)Mx — 2)

1szeroatxy = —2andx = 2. The
(—oo, —2),(—2,2),and (2, 00)

Intervals — oo =D ox =o —2 —2 = x == 2 2 = x == oo
F" Evaluated =31 = 15 Sy = —12 SF3) = 15
Sign of - -+ — —+
Behavior of §f INCreasing decreasing INCreasing
Vo oy =ax—12x — 5
20 -
(=2 11)

1 1 x
3 /4
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4.4 Concavity and Curve Sketching

DEFINITION Concave Up, Concave Down
The graph of a differentiable function v = f(x) is

(a) concave up on an open interval [ if f' is increasing on J
(b) concave down on an open interval 7if f' is decreasing on [I.

The Second Derivative Test for Concavity
Let v = f(x) be twice-differentiable on an interval /.

1. If f* = 0on [, the graph of f over [is concave up.
2, If f" =< 0Oon [ the graph of f over [is concave down.

EXAMPLE 1  Applying the Concavity Test

(a) The curve y = x° (Figure 4.25) is concave down on (—0o, 0) where »" = 6x < 0
and concave up on (0, ©©) where y" = 6x = 0.

(b) The curve y = x* (Figure 4.26) is concave up on ( —oo, oo) because its second deriv-
ative y" = 2 is always positive. |

EXAMPLE 2 Determining Concavity

Determine the concavity of y = 3 + sinxon [0, 27].

Solution  The graph of y = 3 + sinx is concave down on (0, 7), where y" = —sinxis
negative. It is concave up on(7, 27 ), wherey" = —sinx is positive (Figure 4.27). |
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¥y=3 + sinx
—

0 T gl

-1

i-Y
T

58]
T

-2k

FIGURE 4.26 The graph of fix) = x? is
concave up on every interval (Example
Iy

FIGURE 4.27 Using the graph of »" to
determine the concavity of v ( Example 2).

EXAMPLE 5 Studying Motion Along a Line
A particle is mowving along a hornzontal line with position function
s(e) = 28 — 19482 + 22¢ — 5, r = 0.

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is
i #) = & (¢r) = 6¢7 — 28r + 22 = 2(¢r — 1M3¢r — 11),
and the acceleration is
alr) = w'e) = ") = 12r — 28 = 4(3¢r — 7).

When the function s(r) is increasing, the particle is mowving w the right: when s(r) is de-
creasing, the particle 15 moving to the lefit.

MNotice that the first derivative (»» = 5"} is zero when ¢ = 1 and e = 11,3
Intervals 0 == ¢y = 1 1 << ¢ << 11/3 1153 = r
Sign of 2»r = 57 —+ — —+
Behavior of & increasing decreasing InNncreasing
Particle mo tiomn right lefi right

The particle is mowving to the right in the time intervals [0, 1) and (113, o< ), and mowving

to the leftin (1, 11,/3). It is momentarily stationary (atrest)., at ¥ = 1 and ¢ = 1153
The acceleration ai ¢) = =" {r) = H3r — T)is =zero when r = T3

Intervals 0O = ¢ = TS3 TS = r

SNign of ¢ — 577 — —+

Graph of 5 concave down COMCAave Wy

Second Derivative Test for Local Extreme

THEOREM 5 Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = ¢.

1. If f'(c)
2. e Oand f"(c) = 0, then f has a local minimum at x = c.

3. If f'{c) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

D and f"(c) < 0, then f has a local maximum at x = c.
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Strategy for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.
2. Find y' and »".
3. Find the critical points of f, and identify the function’s behavior at each one.
4. Find where the curve is increasing and where it is decreasing.
5. Find the points of inflection, if any occur, and determine the concavity of the
curve.
6. Identify any asymptotes.
7. Plot key points, such as the intercepts and the points found in Steps 3—5, and
sketch the curve.
EXAMPLE & Using " and Ff" to Graph Ff
Sketch a graph of the function

Filxy = x% — ax* + 10

using the following steps.

[a)
L8 3]
[c)
()

Identify where the extrerma of f occur.

Find the intervals on which f is increasing and the intervals on which §f is decreasing.
Find where the graph of f 1s concawve up and where it i1s concave dowr.

Sketch the general shape of the graph for f.

(e) Plot some specific points, such as local maximum and minimum points, points of in-
flection, and intercepts. Then sketch the curve.

Solution  f is continuous since f (x) = 4x* — 12x? exists. The domain of [ is
(—oo, o), and the domain of ' is also { —o<, =< ). Thus, the critical points of f occur
only at the zeros of f'. Since

Fiix) = 4x? — 1227 = 4x3x — 3)

the first derivative is zero at x = ODand x = 3.

Intervals x = 0 0 = x = 3 3 = x
Sign of f° — — +
Behavior of §f decreasing decreasing INCTeASINg
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(a) Using the First Derivative Test for local extrema and the table abowve, we see that there
15 no extremum at v = 0 and a local mumimum at x = 3

(b) Using the table abowve, we see that f is decreasing on { —o<, 0] and [0, 3], and increas-
ing on [3, o).

() f"(x) = 12x2 — 24x = 12x(x — 2)iszeroatx = Dand x = 2.
Intervals xo=Z 0 0 == x = 2 2 = x
Sign of §Ff” -+ — -+
Behavior of f CONCAVE WP concave down CONCave up

We see that f is concave up on the intervals ({ —oo, 0) and (2, oo ), and concave down on
(0, 2).
(d) Summarizing the information in the two tables above, we obtain

x =< D 0 << x =< 2 2 <x << 3 3 <= x
decreasing decreasing decreasing INCreasing
concave up concave down COoOncave up Cconcave up

The general shape of the curve is

Crereral sfupe.

decr | decr | decr | incr
| | |
Conc I conc | conc | conc
up I down I up I up
| | |
I | |
infl il local
poit Pt ety

(e) Plotthe curve’s intercepts (if possible) and the points where »" and v" are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of f. -

¥
Y

y=ax* —ax? + 10
20 -

15
i (0, 100
Inflection 10

povimt 5 L
L L L L L -
—1 0 1 2 4
=5 I Inflection
—10 | point

—-15 =
(3. =17
Local
i i

=20 |~

FIGURE 4.30 The graph of fix) =
xt — 4x? + 10 (Example 6).
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EXAMPLE 7 Using the Graphing Strategwy
Sketch th hof fix) (x + 1)°
etc e ora o - = ———
srap S ix 1 + =

Solution

1. The domain of § is ( —oo, oo ) and there are no symmetries about either axis or the
origin (Section 1.4).

2. Find f"and 7.

) (x + 1}2 a-mtercept at x = — 1,
x) = — w-interocept (v = 1} at
vA\ 1 + x= x =0
x) = (1 + %23« 2x + 1) — (x + 1P «2x
#lx) = (1 + x2)2
. 2(1 — ) Critical points:
(l +_1’2}2 xrx= —l.x = 1
) (1 + 212 -2( —2x) — 20(1 — x2)[2(1 + x2)-2x]
Sy = (1 + x2)*
Ax(xT — 3) )
= 7 3.3 Mfter some algebra
(1 + x=)

3. Behavior at critical pointgs. The critical points occur only at x = =1 where f"(x) = 0
(Step 2) since f' exists everyvwhere owver the domain of §f. At x = —1,
F'(— 1y = 1 = 0 wielding a relative minimuwm by the Second Derivative Test At
x = 1. Ff"(1) = —1 = 0 wielding a relative maximum by the Second Derivative Test.

We will see in Step © that both are absolute extrema as well.

4. Tncreasing and decreasing. We see that on the interwval (—o<, —1) the derivative
JS'x) = 0, and the curve is decreasing. On the interval { —1, 1), f(x) = 0 and the
curve is increasing: it is decreasing on (1, oo) where f'(x) << 0 again.

= frflection points. Notice that the denominator of the second derivative (Step 2) is
always positive. The second derivative f" is zero when x = —%3, 0, and V3. The
second derivative changes sign at each of these points: negative on I::—DC'.. —"\fgjl »
positive on (—"\.-"’IE, D:I . negative on I::D, "\-’Gj . and positive again on l,':'\.-'"g, Dc-j . Thus
each point is a point of inflection. The curve is concave down on the interval

— oo, —"\.-""EJ . CcOoncave up on I::—"\..-'"E, D:I ., concave down on (D, "\.-’"'Ej , and concawve
up again on {"‘\.-6, DOj B

6. Asymprotes. Expanding the numerator of f(x) and then dividing both numerator and

denominator by a2 cives

(x + 137 x4+ 2x 4+ 1

1 + x2 1 + x°

I + (2/x) + (1/x%)
(1/xZ)y + 1

Sflx) =

Expanding numerator

Dividing by x<

We see that flx) — 17 as x — oo and that fix)— 17 as x — —o< . Thus, the line
» = 1l is a horizontal asyvmptote.

Since f decreases on {(—oo, — 1) and then increases on (— 1, 1), we know that
J(—1) = 0 is a local minimum. Although § decreases on (1, @), it never crosses the
horizontal asymptote » = 1 on that interval (it approaches the asymptote from
abowve). So the graph never becomes negative, and f(—1) = 0 is an absolute mini-
mum as well. Likewise, f(1) = 2 is an absolute maximum because the graph never
crosses the asyvmptote » = 1 on the interval { —oo, —1), approaching it from below.
Therefore, there are no vertical asymptotes (the range of f is 0 = p = 2).

7. The graph of f is sketched in Figure 4.31. Notice how the graph is concave down as it
approaches the honzontal asymptote » = 1 as x — — 20, and concave up in its ap-
proach to ¥y = 1 as x — oo m
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-
512
/A\q—___
1 v=1
Horizontal
asymptote
1

-1 1
Point of inflection

FIGURE 4.31 The graph of v = x + l;.ll
(Example 7). S
4.6 Application of Derivatives on Limits:
L’Hobpital’s Rule
im0 200, ®  then
Kbl g(x) 0 o0
lim L) _ i L )
N i g(x) xug(x)
Example: find
. X—sIn Xx . l—cosx . sin X . ocosx 1
Im————=Im———=1lm = Iim =—
x—pl x x—» Ix- w0 [ x x—»l 6 6

THEOREM 6  L'Hopital’s Rule (First Form)
Suppose that f(a) = gla) = 0, that f'(a) and g'(a) exist, and that g'(a) # 0.
Then

o f@

x—a glx) g'la)
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Proof Working backward from f'(a) and g'(a), which are themselves limits, we have

. S — fla) flx) — fla)
fla) _ <oa *—@ T ¥=a
g'l@ . g —gla) roa glx) — gla)
IE};'I X — X — d
= lim fx) = fla) _ lim Sl — 0 lim flx) N
T glx) — gla) = glx) — 0 = elx)

THEOREM 7 L'Hopital's Rule (Stronger Form)
Suppose that fla) = gl(a) = 0, that f and g are differentiable on an open inter-
val f containing a, and that g'(x) # Oon lif x # a. Then

S )
lm ™= 0 o

assuming that the limit on the right side exists.

EXAMPLE 1 Using LUHopital's Rule

@) lim Ax — sinx _ 3 — cosx —
x— x 1 P

W1+ x—1 2%1 + x

- — _1
®) }EHJ x N 1 iy 2

N+ x— 1 —x/2 0
@ lim ;

(21 + )T — 2
lim

— - - -
Sall o differentiate again.

x—={) 2x
—(1/4)(1 + x)732 1 o
= }E}L 5 = -y Not = limit is found.
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Example
. . 3x—sin x
Find lim———=—
x—»il X
Solution
. 3—cosx
= lim
x—»0 1
Example
. . X—sIn x
Find 111117.
x—»0 XJ
Solution
. l—cosx
=lim—F—
x—>»0 3X_
. SInx
= lim
x—»0 6X
. COSX 1
= lim = —
x—ai 6 6
Example
. tan x
llmi
x—x | 4+ tan x
— lim sec: X _ 3
T SeCT X
Example
lim(—— — 1,
=0 SIn X X

; X—sin x
=lim| ———
x> XSin X

l—cos x

= lim

x—0 X COS X+ sin X

2
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FIRST CLASS

Example

2x+In x

Theorem

If imln f(x)=L

X—rd

Then lim f(x) =lime™ ™™ = e

X—rad X—ra

Example
1
lim(l — x7) =

X—>O
1

= (N =0-x") %
1

In f(x) = ——In(1 — x°)
X
- limlIn £(x) = —lim 24— x)
x—» a—ai) X
—2x

- _lim1l=—x
x—»0 2 x

x—a»0

.. lirrol In fii x) =+ 1lim

s lim fA(x) = et

x—»0

H.W
Find

cos x—0.5

=1

1— x°

1- lim
x—=al3 x—a /3

X—»o0

31
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FIRST CLASS

Derivative of Exponential and Logarithmic Function

If u=f(x)
- y=5b"
2- y=¢e"

Example

sin x

dy _ puq1np 94
dx dx
dy _ . du
dx dx
dy_1 1 du
dx u Inb dx
dy 1 du
dx u dx

y=x""=Iny=sinxlnx

1dy

v dx

dy - _\.{sm X

dx b
Example
yv=In
dy _
dx 1—x
Example

tan y=e¢" +In x

dy

2 X
sec” V.—=¢€& + —
dx

dy 1 (xe"‘ +1

dx sec’ y

1

=cos xIn x+sin x—

X

+ cos x.In x)

X ny=Lana+ 0 —Ina— %)
1— x 2
1
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HW

Example Example Find the derivative for
y=3"" y=n"" a)y=x"
dy _ d b)y=In(x" +3)
—r = _3 'E_ln X _J" _ sin x .

» i 7 .Inm.cosx )y = e

33
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Lecturer A.M.Alazzawe FIRST CLASS

SEMESTER ONE
CHAPTER Six
1.6 Trigonometric Functions
hypolenuse - . ¥
- Opposile
e -
adjacent [
A
. opp hyp .
s i = —— osC W = —
hyp opp
s B = J:L:_jp sec o J%T
tam & = ';E;P col i = wj—"
] oFP FIGURE 1.68 The trigonometric
) ) functions of a general angle & are
FIGURE 1.67 Trigonometric . .
defined in terms of x, v, and r.

ratios of an acute angle.

The define the trigonometric functions in terms of the coordinates of the point P(x, y) where the angle’s terminal
ray intersects the circle (Figure 1.68).

}'FHJ[I:I'ITI!’H:‘ o

FIGURE 1.69 The new and old
definitions agree for acute angles.

)
Sne: sinf = cosecant: cscfl =
cosine: cosf == seeant: secfl =
-IIII o
angent: tanf/=7  cotangent: cotf =7
sin T = —_ sin T =1
osTm L T V3
T\ "5 2
m 7 1
tan 7y = | tan - = Vi

7 _ V3 snf |
sin3 = =3 tnf = — ot =—
cosfl tanfl

EDSE_l
373 ] |
_ el =— el =—
an T = V3 cos f sin
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Conversion formula:

1 degree = m/ 180 ( = 0.02) radian
1 radian= 180/ m (= 57 ) degree

The CAST rule (Figure 1.70) is useful for remembering when the basic trigonometric functions are positive or

negative

¥
s A 1
sin pos all pos \ -
4 3"
-
- L x
x 1
2
I C
Lan pos COS POs

The CAST rule, remembered by the statement “All Students Take Calculus,” tells which trigonometric functions

are positive in each quadrant

ITdentities:
sin® & + cos” & = 1

- . _ 1—cos28
sec & =1 + tan- & sim~ @ = ————

2

sin 2& = 2sin & cos &
CcosS 28 — cos’ & — sin’ & sin{ A+ B) = sin Acos B+ cos Asin B
cos2 @ — 1+ cos2o cos( A+ B) = cos Acos B —sin Asin B

2

Periods of Trigomometric

Functions

Period = - tan(x + 7)) = tanx
cot(x + 7r) = cotx

Period 25 : simi{x + 2ww) = sinx
coslx + Z2ar) = ocosx
secix + 29r) = secx
csclx + 29r) = cscx
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Periodicity

A function fis periodic if there is a positive number p such that f (x+p) = f (x). the

smallest such value of p is the period of f.

cos (0 +2m)=cos O
tan (0 + 2mw) = tan O

sec (0 + 2mw) =csc O

similarly
cos (0 - 27w) = cos O

. sin (0 + 2w) = sin O
s sec (0 + 2w) =sec O
. cot (0 + 2w) =cot O
. sin (0 - 2w) =sin ® and so on....

Graphs of trigonometric functions
When we graph trigonometric functions in the coordinate plane, we denote the independent
variable (radians) by x instead of 0.

TAEBLE 1.4 WValues of sin #, cos @, and tan # for selected values of @
Degrees —180 -—135 —90 —45 0 30 45 [:11] 90 120 135 150 180 270 360
. -3 —aT —aT T T T T 2 3o S 3
# (radians) — 2 3 3 0 6 3 3 2 3 3 6 T 2 2
- o —V2 . =V2 o1 V2 V3 V3 V2 1 0 -1 o
o 2 2 2 2 2 2 2 2
— — — — — —
—N2 W2 V31NV 2 1 1 W2 =3
cos @ —1 5 0 5 1 5 5 5 0 -3 5 5 —1 0 1
tan 6 0 1 -1 0 ¥ 1 V3 R T 0
[ v com . v e | /| /
i = A O I N e Lﬁ 3 S =a // /
| = = | = M = \M’ %
Domain: —oc = x = oo Domain: —sc = x = oo Domain: x == +—_ STT’
wmmEs o= gmmEs LU= Range: o — v < =

I\lll |
fﬁ? T ?ﬁ\f

IDormainm:

¢+_ -

Range:
Period:

W= 1 andy = 1
D
O

FIGURE 1.73

(b

»
¥ = Ccsc X

|HL&:J
TRETAA

IDormain: x = (b, g, =2, .
Range: o= —1 and »v = 1
Period: 2o

)

Period: T <)

Dormain: x = b, e, =2ar. .- .

Range: —oo — ¥ — oo
Period: =

(& 5]

Graphs of the (a) cosine, (b) sine, (c¢) tangent, {(d) secant, () cosccant, and (f) cotangent

functions using radian mecasure. The shading for cach trigonometric function indicates its periodicity.

Even and odd trigonometric functions

The graph in the above figures suggest that cos 6 and sin 6 are even functions because their graphs
are symmetric about the y-axis. The other four basic trigonometric functions odd.

3
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cos (-0) = cos O
sin (-0) = -sin O
sec(-0)=1/cos (-0)= 1/cos O = sec O
Inverse trigonometric functions and their graphs

Inverse Trigonometric functions

. . . . . . . . . . =l -l
The inverse trigonometric functions are the inverse functions of the trigonometric functions, written €8s~ z, €0t™ z,

gso=! z, sec™! z, sj,;n," z, and T.an," B,

Domain: -1 =x=1 Domain: -1 =x=1
Range: —;—T =y= g Range: O=y=a
y y
A A
i PR ——— ar
2 L B »
y = sin"'x y = Ccos X
1 ] " | T
=1 1 % 2
SRS 1. ;- 1 >
2 ;| 1
(a) (b)
Domain: x=—-lorx=1 Domain: x=-lorx=1
Range: 05}’51’7’)’#72—7 Range —giysg,y¢()
y y
A A
ml
el S 7 5 = E8E™ %
T y“sec"x
_______ 3 PR | | ! !
=2 -1 1 2
T
1 I i I 5 T
=2 —1 1 2 2

(d)
Sec'=1/Cos = Cos,
Csc'=1/Sin = Sin,

Cot'=1/Tan = Tan

Domain: —co << x << oo

. T £
Range: 5 < y< 5
Yy
A
_______ S ——
2 y = tan"\x
| l | | >
-2 -1 1 2
_T
_______ i A s
(©
Domain: —co << x << oo
Range: O<y<m
y
A
_______ 7T s — — — — — — —
y=c0t‘1x
W
N2
1 1 I 1 > X
-2 -1 1 2

(f)
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INMPORTANT: Do not confuse

sin™' @, cos™ ' a, tan~"' a cot™" a, sec™ ! o, csc™ ' a
with
1 1 1 1 1
sin o’ Ccos a tan x’ cot ax’ secx csc T
FUNCTION DONMAIN RANGE ' sin ¢ cos 1 tan ¢ esc ¢ sec I cot 1
sin~! @ [—1,1] [—7 /2, m/2] ! . : - L
™ 1 W3 W3 I3 -
cos™'x [—1,1] [0, 7] o 2 2 3 2 5 V3
5 T — 5 y — < ‘ - I I - -
tan~"ta (—oo, +o0) (—m/2,m/2) - ’ / | va v |
(:01’_1 &€ (_D(:I" +D(‘]) (D"?I'_) T L] I = A [ [ W3
sec™la (—oo, —1]U[1l,4+00) | [0, 7/2) U [m, 37 /2) | 2 2 2 e : - ;
csc (—oo, —1] U1, +o0) | (0,7/2] U (7.37/2] | = ! o - ! - 0
sin(—r) = — sin ax cos{—x) = cosx tan({—x) = — tan =
cscl —ar) = — cscxT sec( —xr) = sec x cot{—x) = — cotx
sin{(x £ 7) = — sinx cos(x &= 7)) = — cos:x tan(ox =& 7)) = tan x
sec(ax £ w) = — secx cscla = w) = — escax cot{xr = 7)) = cot =
EXANPILES:
(Aa) sin~!'1 = T since sin =~ —1 and = e [—-Z2. T
- i o2 T = - 2 2 2]
(b) sin~'(—1) = —j;;, since sin (—g = — 1 anc —g [—g, g]
1 ; A T TT
(c) sin 0O = (0, since sin 0 = 0 and 0O = — 55"
1 1
(d) sin—?! > — g, since sin % = 5 ard % = [—g, ZLL’:I .

(e) sin—! V'3 =z . since sin T = V3 and — = [_T_Lv Z] .
) : : ) 3 2° 2

= -1 XY= = T 5i e =i — = — & — _ ., — | -
(f) sin > o - since sin o > aracl a < [ = 2:|
EXAMPLES:

-1 T -1 -1 1 ‘ -1 V3 m -1 V2
cosT0=—, cosT 1=0, cosT(=1)=m, cosT —=_, cCOS =—, co8 — =
2 2 3 2 6 2

=

T — T
tan™!1 = T tan ™' (—1) = —i, tan~'v3 ==, tan~!

1 L _1( l) T
— = —, tan —_— ===
3 V3 6 V3 6
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< Basic idea: To find sec” 2, we ask "what angle has secant equal to 2?" The answer is 60°. As a result we
say that sec™! 2 = 60°. In radians this is sec™! 2 = n/3.

¢ More: There are actually many angles that have secant equal to 2. We are really asking "what is the

simplest, most basic angle that has secant equal to 27" As before, the answer is 60°. Thus sec™! 2 = 60° or
-

sec” 2 =m/3.

% Details: What is sec™! (-2)? Do we choose 120°, —120°, 240° , or some other angle? The answer is 120°.
With inverse secant, we select the angle on the top half of the unit circle. Thus sec™ (=2) = 120° or sec™ (-
2) =2n/3.

Note: sec 90° is undefined, so 90° is not in the range of sec-1

EXAMPLES: Find sec™!' 1, sec™!'(—1), and sec™'(—2).

Solution: We have

sec™'1 =0, sec™!(—1) = m, sec™1(—2) = ;L_
since 4
sec0 =1, sec T = —1, sec ;T = -2
and ) 3
= ¥ T T
0, 7 e[ﬁ—)u[L,')
3 2 S
Note that sec _'3: is also —2, but
LS 2 -
sec H(—2) # :
since 3
27 iy DT
0,2) u[m )
3 7 [ 2 o
EXAMPLES: Find
2
tan~' 0 cot™t 0 cot™t1 sec™! V2 cse” 12 cse™t
EXAMPLES: We have
_ _ T _ T _ T _ T 4 2 T
tan™!0=0, cot™'0==, cot™'l=—, sec™'vV2=—, csc™'2=—, csc”== —
2 4 4 6 V3 3
Can use this formula
LT 1. arccot x = r_ arctan x
col "x=——tan "« ERr=T SLdil
= or -
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- 8
EXAMPLES: Evaluate sin (arcsin g) , arcsin (Sin %) , and aresin (Sin ;L_) )

Solution: Since arcsin a is the inverse of the restricted sine function, we have

sin(arcsinx) = z if @ € [—1,1] and arcsin(sinx) = x if x € [—n /2,7 /2]
Therefore
) .7 T ) .m T
sin (arcsm —) = — and aresin (sm —) = —
T T T T
but
L ( (ﬁ+ ))_( ﬁ)_ (ﬂ.ﬁ_ T
arcsin S11 ? = AIrcsiin | sin ? T = arcsin — S1I1 ? = — AI'CSsII S111 ? = — ?
. . ] .2 L2
EXAMPLES: Evaluate cot | arcsin = and sec [ arcsin =)
Solution 1: We have
cos ++/1 — sin? 60 1 1
cotf = — °7 = - > and secfl = =
sin ¢ sin ¢ cosf +4/1 — sin2 0
) 0 . T . - ) . 2
Since —5 < arcsinax < 3 it follows that cos(arcsinx) > 0. Therefore if # = arcsin —, then
1 —sin?# 1
cotd = \/—Hm and secl = —
sin ¢ 1 —sin?4
hence
. 2 2\ 2
1 — sin? (arcsin —) 1-— (%) -
A ovesin 2 — °) 5/ V21
cot | arcsin 5= “- e = E =
sin [ arcsin 5 5
and
( ] 2) 1 1 5
sec | arcsin — | = = =
5 \/ - ( | 2) \/ (2)‘2 V2l
1 — sin“ | arcsin — 1—(=
5 5
) .2 i 2
Solution 2: Put # = arcsin = so sin# = —. Then 5
s s = 2
2 21 2 5
cot (at‘csin —) =cotf = \/— and sec (arcsin —) =secl = —— ¢
5 5 V21 V21
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EXAMPLES: Evaluate, if possible, cot (Siﬂ-l 2) and sin (tan=!2) .

We first note that sin™ 2 does not exist, since 2 ¢ [—1, 1], that is. 2 is not in the domain of
sin~! 2. Therefore cot (sin_l 2) does not exist.
We will evaluate sin (tan=!2) in two different ways:

Solution 1: We have
tan @

V1 + tan?#

Since —7/2 < tan~!z < 7 /2, it follows that cos (tan~—! ) > 0. Therefore if # = tan~! 2, then

sin @ =

tan @

V14 tan?d

sinf =

hence

. -1 tan (tan=!2) 2 2
sin (Lan '2) = : = =
V1 +tan? (tan=12) V1I+22 /5

2 2 .
Solution 2: Put @ = tan~!' 2 = tan™! 1’ so tan @ = T Then NG 2

sin (Lan_l 2) = sinf =

2
V5 1

EXAMPLES: Evaluate sin [ cot™ [ —= and cos | cot™? =3
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Derivative of Trigonometric Functions

If u=f1(x) then

y =sinu y =cos u .du/dx
y =cosu "= -sin u .du/dx
y=tanu y = sec” u .du/dx
y =cotu y = -csc” u .du/dx
y =secu y =sec u. tan u.du/dx
y =cscu y =-csc u .cot u. du/dx
Example
xy+sin y=0
(x%+ y)+msy.%: 0
S

dx x+cosy

Example

Find the slope of the line tangent to the curve y =sin’x at the point where x=n/3.
Solution

y = 5sin*x . cosx

the tangent line has slope
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Example
A body hanging from a spring is starched 5 units beyond its rest position and

released at time t=0 to bob up and down. Its

Af

position at any later time is
s =5 cost Z
What are its velocity and acceleration at time t? B

Solution

. PN P

Position s = 5 cost

Velocity v(t) = -5sint

Acceleration a(t) = -5cost
H.W

Find the derivative for

sin X
y:
X
1
y=-
sin X

y* = x° +sin xy

2- Find the second derivative of y = sec’5x

10
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THEOREM: We have

(a) (sin™?!w) = ;u' (d) (cot—'wu) = — ;t.‘.—"

RV 1 4+ 2«
(b) (cos—!wu) = —%u’ (e) (sec—!twu) = ;?.‘"‘
WL — wu? w2 — 1
(c) (tan—?! w)’ = ;.n" (f) (csc™ 1 w) = —;n’
1 + w2 renS 2 — 1
Proof:
(a) Let 3 = sin™" u, then siny = u. Therefore
!
(ﬂ- P B P ' [
siny) =4 = cosy-y =u — Yy =
cos iy
Si Z <sinly < I, it follows that > 0. H
Since —— < gin™ u, < —, it follows that cost . Hence
o = 2= 75 ‘ J =
y
.9 . 5 ; ?.{-r ?_{-r
cosy=1/1—sin“y=[siny=ul=vV1l—-u?* =— 1y = =

cosy 1 —u?
(b) Let 3y = cos™ u, then cosy = u. Therefore

!

_ u
(cosy) =u = —siny-y=u = 3y =——
sin y
Since 0 < cos™ u < 7, it follows that sin y = 0. Hence
N—— -
Y
u’ u'
siny =+/1—cos?y=[cosy=ul=V1—-uw? =— y=——=—-—F=

(c) Let y = tan™! u, then tany = u. Therefore

/
u
(tany) =u' = secy-y' =u = o = 5
sec? y
Note, that sec?y = 1 + tan®? y = [tany = u] = 1 + u®. Hence
, u'

1 =

sec?Zy 14 u?

11
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(d) Let y = cot™! u, then cot y = u. Therefore

! ! 2 ! ! ’ ’f-"'r
(coty) =v = —csc’y-y=u = y=—-——3—
csc? y

Note, that ecsc?y = 1 + cot?y = [coty = u] = 1 + u?. Hence

' '

csc2y 1+ u?

(e) Let y = sec™! u, then sec y = u. Therefore

u

r / ! !
secy) =u' = secytany-y =du =— Yy =——
(secy) ytany -y e —
Since gec™!u € [0,7/2) U [rr,37/2), it follows that tany > 0. Hence
v

/ !

5 . U u
sec ytany = secyy/sec?y — 1 = [secy =u] = uvuz -1 =— ¢y = =

secytany  wuv/uZ — 1

(f) Let y = esc~! u, then cscy = u. Therefore

!

! ! ! !
cscy) =u = —cseycoty-y=u — Yy =-———"—
(cscy) ycoty -y Yy p—
Since csc™tw € (0, /2] U (, 37/2], it follows that coty > 0. Hence
u

' 4

cscycoty = cscyrJescly — 1l =fescy =u]l =uvu? —1 — ¢y =—— =
cscy coty uvu? — 1

EXAMPLES:
(a) Let f(x) = xtan=1(1 — 2x). Find f'(x).

(b) Let f(x) = 29074 Find f/(z).

(¢) Let f(z) = /sec=1(1 — 3x). Find f'(x).

12
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EXAMPLES:
(a) Let f(x) = ztan™ (1 — 2x). Then
f'(x) = [xrtan™!(1 — 22)]" = 2'tan™!(1 — 2x) + z[tan™!(1 — 22)]’

1
=1-tan"Y(1 =22)+=x (1 =2x)
= (1= 20) oo e (1 20)
=tan" (1 — 2x) + = (=2
an~ ?)+Tl+(l—2:r:)2 (—2)
2x
=tan" (1 — 2x) —
= (1= 20) = T o
-

=tan~Y(1—-222) — ———
™ ( r) 1 —2x+ 222

(b) Let f(a) = 257142 Then

fx) = [Z“i“_L('i"’)} = 2sinT () | 9 . [sin_l(il:r:)r

. 1
— 9sin Ldx) In?2 :
V1= (4x)?
1
V1= (4x)?

25111_L (dx)+2 n?2

1 — (4x)?

- (4x)

— 25111_J‘[f19:) In?2

(c) Let f(x) = y/sec=1(1 — 3x). Then

f(x) = [(sec™ (1 — 3x))1/?) = %(scc.'l(l — 3x))"2 . [sec™(1 = 32)]

_ 1 sec=1(1 — 37))-1/2 1 01—y
= 2( ec” (1 — 3x)) (=30 /o= =1 (1—3x)
— Lgecm1(1 = 32))-12 ! (=

B 2( ec™ (1 = 32)) (1—-3z)/(1-32)2 -1 (=3)

3
2(1 = 3z)/3x(32 — 2) sec=1(1 — 3x)

13
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Solved question

Graph the functions in Exercises 13—22. What is the period of each

function?
[13. sin2x 14. sin (x/2)
Solution
13. 14. . .
¥ A
—yEsing 1Y e YTSINT
y=sin2x i o =g - e
2r ™., - ;0 L s
_'l -l R
X
] T
2
-1F
period = period = 47
15. cos 7x 16. cos%
17. —sin% 18. —cos 2ox
19 -z 20. sin(x + I
. cos| x 3 . SIn| x 2
21 sin[x — T ) + 1 22. cos[x+ T ) =1
.o 2 2 . s| - 3
Graph the functions in Exercises 23—26 1n the fs-plane (r-axis horizon-
tal, s-axis vertical). What 1s the period of each function? What sym-
metries do the graphs have?
23. § = cot2r 24. 5 = —tan wr
Solution
23. period = Z. symmeitric about the origin 24 period = 1, symmetric about the origin
+ 3
. o ' by
ANEANE AN AN AN AN
| A R \ S
| A | i -3 7 Gy
SAWANIANEANE BNy NS
5 == tan =t

14
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25. 5 = sec (?) 26. 5 = csc (%

Inverse trigonometric

Each of Exercises 13—18 gives a formula for a function v = fix) and
shows the graphs of f and ™. Find a formula for f~! in each case.

13. fix) =22+ 1, x=0
1 v = fi(x)
1 ¥ =sF""x)
0 1 *
Solution
13. Step 1:

Step 2:

14. Step 1: y = x“

Step 2:

15. fix) =x* — 1

¥

¥ = fix)

v=7"x

17. filx) = (x + 1), x = —1
.\"
» = Filx)
y =~

14. fi(x) = x7,

x =0

= X = —,/¥.since x < (.

Y = —\/;:f_l(x)

16. fix) =x—2x+ 1, x=1

¥

y=x"4+1 = x*=y—1 = x=,/y—1

y = vx—1=Ff"1(x)

15
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Each of Exercises 19—24 gives a formula for a function v = f(x). In
each case, find f~!(x) and identify the domain and range of f™'. As a
check, show that f(f~'(x)) = f~'(f(x)) = x.

19. f(x) = x° 20. fix) =x* x=0
21 fix) =x* + 1 22, flx) = (1/2)x — 7/2
23 flx) =1/x% x>0 24, f(x) =1/x°, x#0

19. Stepl: y=x> = x=y'/
Step2: y="/x=f"'(x);
Domain and Range of f~!: all reals;

f(f~1(x)) = (x”‘r’)ﬂ = x and f~1(f(x)) = (xr‘)uﬁ =X

20. Stepl: y=x! = x=y/*

Step2: y="/x=f"'(x)

Domain of f~': x > 0, Range of f~': y > 0;

f(f~'(x)) = (::-iu“i)il = x and f~1(f(x)) = (rxﬁ)lfF4 =X

21. Stepl: y=x>+1 = xX*=y—1 = x=(y— D3

Step2: y=%/x — 1 =f"1(x):
Domain and Range of —1. all reals:
FE1x) = (x—=DY3)’ +1=(x—D+1=xand f1(f(x) = (3 + 1) — D" = x%)"* =x

In Exercises 25—28:
a. Find f~'(x).
b. Graph f and ! together.

c. Evaluate df/dx at x = a and df '/dx at x = f(a) to show that at
these points df ' fdx = 1/(df/dx).

I2s 70 =2x + 3, a=—1 26 flx) = (1/5)x + 7, a=—1|
25. (a) y=2x+3 = 2x=vyv — 3 (b)
b
= x =% — % = f~l(x) = 5 — % A y=sr=2x4+3
(c) & =2, 4 =1
dx | x=—1 dx x—1 2 y=f71(x)=§—%

—32, Lo} / 3
—32

16
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26. (a) y=1x+7 = lx=y—7 ®) y
— o —1 _ o
= Xx=5y — 35 = ' (x) =5x — 35 y-f(x)-i‘s-q-?
df — L ar! =5
(C) dx | x=—1 5 dx x=34/5 —]

y =1t"V(x) = 5x — 35

[27. fx) =5 —4x, a=1/2 28 flx) =% x=0, a=5

7.7 &)

17
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Chapter?7

Matrices and determinants

Matrices

Definition: An mxn matrix is a rectangular array of numbers (m rows and n columns) enclosed in brackets. The
numbers are called the elements of the matrix.

Fxamples:

(1) A 2 >~ 3 matrix has 2 rows and 3 columns:

1 2 3
“_<567

(1) Here s a 3 >< 3 sguare matrix:

1 =2 =3
A — 5 ©6 e
S 9 10

(ii1) Coluammn vectors are matrices with only one colummn:

- ()

(iv) Row wvectors are matrices which only have one row :

b — (1 2 3).

A general real matrix, A « IR " with 72 < 72 elements is of
the form

@i a2 @13 - - - X1
oy (& 82307 oz - - - 2y

A = asz1 azz aszs ... «aop 1)
Lyl oy oy 3 - - - CLoyrrra

4x4 4.3x3 .2x2

2 4

3
1 3 )

-~ O W
R -

L
L

oo b =
|
k-

o O R

o h = =
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We refer to the elements via double indices as follows

(i) The first index represents the row.  (ii) The second index represents the column.
(a32) is the element in row 3, column 2 of the matrix A.

Use lowercase boldface (or underlined) letters for vectors

abc(ora,b,c)

Use uppercase boldface (or underlined) letters for matrices

ABC(orA,B,C)

Refer to the respective elements by lowercase letters with the

appropriate number of indices e.g.

bi is a vector element

aij is a matrix element

Matrix algebra

Two matrices are equal if they have the same size and if their
corresponding elements are identical , i.e.

A =B
if and only if

a,; = b,; fore=1,...,m; 7 =1,....,n

Matrix addition

¢ Two matrices can only be added if they have the same size.
¢ The result is another matrix of the same size.

2
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+» We add matrices by adding their corresponding elements, i.e.

A=B+C
Is obtained (element-wise) via
aij = bij + cij fori=1,..,m;j=1,..,n
Problem 1. Add the matrices

2 — 1 —3 1O
Ca) ( _ = 4) armnd ( — _4)
3 1 — 2 i —5
(=] e 3 3 1 and —2 1 O
1 a5 —3 & 3 Ra X
Ca) A.dding the corresponding elements gives:
2 — —3 O
— A -+ 7 —
. 2 +(—3D —1 + 0
_ —7 + 7 4 4+ (—<)
- 0 0)

(b Mdding the corresponding elements gives:

3 1 —3 2 7 —5
=+ 3 1 —+ —2 1 O
1 =1 —3 & 3 =+

3 + 1 + 7 —4 +— (—5)
i 4 4 2 3+ 1 1 +— O
1+ + 3 —3 + 4

NN
g

( 2
-( )
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Problena 2. Subtract
—3 (@] 2 —

(a) ( — L ) from (_? 4)

2 i —5 3 1 — <4
(b)) —22 1 1O from Fa § 3 1
“ 3 = 1 = —3

=2 — —3 O
@ (=7 D) -C3 -9

o 2 _—(—3) —1 — O
= —7 — 7 4 — (—<)

3 1 — > 7  —s5
(b) 4 3 1 — _— ] 1 O
1 4 —3 6 3 4

Problem 3. If
-3 0 2 =1
Az( ; _4),B= (_? 4)311[1

10
C= (_2 _4) find A+B - C.



\
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A B = _1 o
5= 0
(from Problem 1)
Hence. A+ B — O = _1 _0) ( > _O)
—1 — 1 —1 — 0O
O —(—2) 0O — (—4)

(2 )

Adlternatively A + B — C

(7 D+ (5 B (=2 9

f —3 +2—1 O+ (—1) —0
- 7 4+ (—7) — (—2) —4 + 4 — (—4)
_g _4) as obtained previously
Multiplication

When a matrix is multiplied by a number, called scalar multiplication, a single matrix

results in which each element of the original matrix has been multiplied by the
number.

Problemd4. IfA= (_g _2) -

2 -1 1 0
B= (_? 4) and C = (_2 _4) find

2A — 3B +4C.
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-3 0) -6 0
2‘”‘=2( 7 —4)=(14 —8)’

2 —1) 6 -3
3B =3 (—? 4)= (—21 12)*

wa ac—a(_L )= (% _\9)

Hence 24 — 3B + 4C

6 o2) (e ) (E Z9)

—6— 6+ 4 0O—(=3)+0
14 —(—21)+(—8) —8 — 124 (—16)

-—(8 _s2)

EX.
10 15
30 -40 90
= B= 70 90
-25 =80 100
120 110
Find
1)AB  2)BA

( 10 157 )
(30 —40 90) 70 (30 —40 90) 90
120 110
1) AB=

10 15
(25 —80 100) 70 | (—25 —80 100) 90
L 120 110))

6

|

8300 6750
6150 3425

)
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A

( 30 —40 90
(10 15 ) (10 15 %0 (10 15 100
~75  —1600 2400
30 —40 90
2) BA=| (70 90 (70 90 (70 90 =| —150 —10000 15300
~25 ~80 100

30 a0 o0 850 —13600 21800
(120 110 (120 110 (120 110
. - 25 —80 100) |

2 3
Problem 5. If A= (1 _4) and
-5 17
B=l(_3 4) find A x B.

Cii Cn2
Gy Cxn

(1 1s the sum of the products of the first row elements
of A and the first column elements of B taken one at a
time,

Let A x B=C where C = (

Cii=2x(=5)+@Bx(=3)=-19
Cp=2xT+@Bx4)=26

G =1 x(=5)+(—4) x(=3))=7
Co=(10x7)+ (-4 x4)=-9
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-19 26
Thus,AxB_( . _9)
Problem 6. Simplify | 33 "3 =3
3 4 0 2
2 6 3|x| s
7 —4 | —1

3 4 0 2
—2 6 —3 ]| x 5
7 —4 1 —1

(3 <24+ (4 =< 5)4+ (0 =< (—1))
(—2 < 2)4+ (6 x5) 4+ (—3 < (—1))
(7 <24+ (—4 < 5)+ (1 =< (—1)»)

(%)

3 B (8]
Problem 7. If A — —2 o —3 and
i — 1
2 —5
=B = 5 — find A = .
—1 —7 3X3%2X3=3x2
3 4 0 2 | =5
2 6 -3|x]||5|-6
]

—1 | =7
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( [(3 < 2) [(3B =< (—5)) A
-+ (4 = 5) + (4 =< (—6))
+ (O > (—1))] —+ (0 =< (—7»1]
[(—2 =< 2) [(—2 > (=53
= + (6 < 5) + (6 < (—6)) 26 -39
+ (—3 < (—1)»] + (—3 < (—=7N]
[(7 =< 2) [(7 =< (—5)) = 29 -5
+ (—4 < 5) + (—4 =< (—6)) -7 =18
\ 4+ (1 < (—1»] + (1 < (—7n1 /

Problem 8. Determine

1 O 3 2 2 0
2 1 2| x 1 3 2
1 3 1 3 2 0

Let a € IR™ and b < IR"™ be two column vectors with 72 real
elements each:

il bl
L 5)2
a — as s b = b3
a, b,

a-b=ab + asby + azbs + - - -+ a,b,.

= - il - ( lo/nT CF > i3 - - - CF oy ) -

def
aT b — a- b = 0»151 + (J;ng —+ (1353 + -+ G»nbn
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Problem 9. IfA= (? 3) and

B= ({2] ?) show that A x B#£B x A.

> 3 > 3
AXB_(I o)x(o 1)

_ [(2 =< 2) + (3 >= O0)] (=2

= 3) 4+ (3 = 1)]
[€1 > 2) 4+ (O > O]  [(1 3 3) 4+ (O > 1)]
_ B <
- > 3
> 3 > =3
Vs - —— (0 1) o (1 0)
O IC2 < 2 4 (3 < 1)1 [(2 =< 3) 4+ (3 =< O)]
= Lo <2y 4+ 1 < 131 [0 =< 3) 4+ (1 =< O)]
L v o
- 1 (8]
) 4 9 T 6
Since then A x B B xA
Determinant of a matrix
A aip ai2
21 A2
is written det A or |A| or
ailp aiz2 L
— 1122 — A1242]
asy1 aoso

10
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The determinant of a 3 < 3 matrix is written as

a1l a1z a3
|AI — (e 551 Lo aos3
a3l a32 ass

a1 a2
31 a3z

s as3
31 33

oo A23

— 11 | — 12 -+ a3

32 (133
The sign of a minor depends on its position within

+ — +
the matrix, the sign pattern being — —+ — -
—+ —+

That is the 3 x 3 determinant is defined in terms of determinants of 2 x 2 sub-matrices of A. These are called the

minors of A.

Faxaoirlessn 0O IMNeterrminmne thhe waluae o
= —=
- =
‘3 _2‘ (3 < 4) — (—2 x 7)
— b —_ J— b
7 a =12 —(—14) =26

1 = 3 —3

Problem 15. Evaluate [ —5 2 (&3

—1 — 2
1 Y —3
Using the first row: | —5 2 &
—1 — 2

2 5] —5 5] —5 2
= (4 4+ 24) — A(— 10 4+ 6) — 3(20 + 2)
— 28 +— 16 — 66 — —22

1 -3 —3

Using the second column: |—5 2 o

—1 — 2

—5 5] 1 —3 1 —
= —4_ 2|+2|—1 2|_(_4}|—5 6|
—N— 10 +-6) 4+ 2(2 — 3) 4+ N6 — 15)

e —2 — 36 = —22

11
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Calculate the determinant of

1 2
2 3
1 3
3 5

Calculate the determinant of
—1.3 7.4
2.5 =39

Calculate the determinant of

3.1 24 6.4
—16 38 -—-19 [—242.83]

53 34 —438

Points to note:

e the determinant det A is equal to zero if

(1) rows or columns of A are multiples of each other,

(11) rows or columns are linear combinations of each other,

(111) entire rows or columns are zero;

if det A = 0 the matrix A is called a singular matrix;

e for any square matrices A and B there holds
det A = det(AT), det(AB) = det(A) det(B).

e for the unit matrix I one has detI = 1.

12
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THE INVERSE OR RECIPROCAL OF A2BY 2 MATRIX

The inverse of matrix A is A~ ! such that A =< A—! = r.

the unit matrix.

1 2 ; ;
et matrmnx A be ( 4) and let the inverse matrix,

—1
A be (r; d)

Then. since A < A1 —

G 2= 9

Multiplyving the matrices on the left hand side, gives

a + 2c b+ 2d o 1 O
3a + 4c 35 + 4d T O 1

Eguating corrcsponding clements gives:

H 4+ 2ed — O, 1.e. H = — 2
} =}
arvdd Ser + e — O, = Par — —Er;

Substituting for a and b gives:

=
—Ec—I—Zc —2d + 24 o 1 O
4 . — \o 1
3 —5.‘: —+ 4 3(—24)y + 44
o _.; o (1 0)
o O 1
2 3
showing that —c=1. 1i.e. = — an 2d =1, 1.e.
) 3 2
o = — —
2
Since Hp = —224. H» =1 and since a_——c = —2

Thus the inverse of matrix (3 2) is (a d) that is.
—2 1
3 1
2 2

13
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c

a b\ ' - 1 d —b
c d o (a_ b) —c a
det
SN
Example. To find
3 5\ '
1 2
(3 5) _ _
det (1 2) =3-2—1-5=1

G -1 (3 2)-(3 )

first check that

Then

—

Note: the inverse A ! exists if (and only if) det A £ 0.

Problem 13. Determine the inverse of
3 =2
7 4

(3 —2)_ 1 (4 2)
7 4)] 7T B x4)—(—2x T \—7 3

2 1
_ 1 4 2\ _ [ 13 13
=56\—7 3)=\| 27 3

26 26

14
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- - =
INcetertmineae thhe imnverse ol (

FIRST CLASS

=D

—
- 1
17 17
-1 =
17 17

I

1 =>
INetertmine thhe inverse of ? g
= =

- = s
17 -
_a = ==
= =

THE INVERSE OR RECIPROCAL OF A3 BY 3 MATRIX

The inverse of matrix A, A~ ! is given by

el adj A
: |A|

where adj A is the adjoint of matrix A and |A]| is
the determinant of matrix A.

Problem 1°7.

Determine the inverse of the
3 <} —1
matrix 2 O 7
1 —3 —2
dj.A
The inverse of matrix A, A— ! — %
The adjoint of A is found bywy:
(i) obtaining the maitrix of the cofactors of the ele-
ments., and
(i)

transposing this matrix.

15
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The cofactor of element 3 is —|—| _{3) _; I = 2 1.

The cofactor of element < 1is —| % _; | — 11. and so on.
21 11 —

The matrix of cofactors is 11 —5 13
28 —23 —8

The trans pose of the matrix of cofactors, i.e. the adjoint
of the maitrix., is obtained by writing the rows as

21 11 28
columns, and is 11 —5 —23
— 5 13 —8
From Problem 14, the determinant of
3 4 —1
=2 O 7 is 1 13.
1 —3 —2
3 = —1
Hence the inverse of > O 7 is
1 —3 —2
21 11 28
11 —5 — 23
— 5 13 —= 1 21 11
113 oY 713 . —=
—iH 13
Problemm 18. Find the inverse of
1 5 —2
3 —1 <}
—3 o —7
adjoint
Inverse — .
determinant
— 17 o 15
The matrix of cofactors is 23 —13 —21
18 — 10 —16

16

28
— 23
—8
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—17 23 18
9 —13 —10
15 =21 -—16

] 5 =2

"he determinant of 3 -1 4

-3 6 =7

—1(7—24) = 5(=214+12) — 2(18 = 3)
——17445-30=—-2

1 5 =2
{ence the inverse of 3 -1 4
-3 6 =7
—17 23 18
0 —13 =10
15 =21 -—16
N )

85 -—-115 -9
= | —-45 6.5 5
-7.5 105 8

17
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1. Write down the transpose of
4 —7 6
-2 4 0
5 7 —4
4 —2 5
—7 4 7

Write dose i the Trans o se of

il
L ] Hl=

3 [ &
j . )
— 1 i

(]

)

(5 -5 9]

=1 —_ L5
Ihete i iree thee adjpoe int of —2 4 L

— 1 143 —24
— = — < —12
—35F4 — 03 X

Irete i irne the adjpoeint of

Find the inverse of

3 3
= =
—1 o =
=2 3 1
3 1
— 1 ib XL — 185 J
=
— —i —3x
=4 —_F O
—_ 4 L
5 el —4

= 1
—33 421
= | 1
22 —18l
—6 —32
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